Momenterzeugende Funktion

aus Wikipedia, der freien Enzyklopädie

Die momenterzeugende Funktion ist eine Funktion, die in der Wahrscheinlichkeitstheorie einer Zufallsvariablen zugeordnet wird. In vielen Fällen ist diese Funktion in einer Umgebung des Nullpunktes in den reellen bzw. komplexen Zahlen definiert und kann dann mittels Ableitung zur Berechnung der Momente der Zufallsvariablen verwendet werden, woraus sich ihr Name erklärt.

Definition

Die momenterzeugende Funktion einer Zufallsvariablen Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle X} ist definiert durch[1]

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle M_X(t):=E\left(e^{tX}\right)} ,

wobei für Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle t} reelle bzw. komplexe Zahlen eingesetzt werden können, sofern der Erwartungswert auf der rechten Seite existiert. Dieser Ausdruck ist mindestens für Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle t=0} definiert. In vielen Fällen, siehe unten, ist diese Funktion in einer Umgebung der 0 definiert, und kann dann wie folgt in eine Potenzreihe entwickelt werden.

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle M_X(t)=E\left(\sum_{n=0}^{\infty}\frac{(tX)^n}{n!}\right)=\sum_{n=0}^{\infty}\frac{t^n}{n!}E(X^n)=\sum_{n=0}^{\infty}\frac{t^n}{n!}m_X^n} .

Dabei gilt Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle 0^0 := 1 } und die sind die Momente von Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle X} .

Die momenterzeugende Funktion hängt nur von der Verteilung von Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle X} ab. Wenn die momenterzeugende Funktion einer Verteilung in einer Umgebung von 0 existiert, so sagt man, etwas unpräzise aber allgemein gebräuchlich, die Verteilung habe eine momenterzeugende Funktion. Existiert nur für Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle t=0} , so sagt man entsprechend, dass die Verteilung keine momenterzeugende Funktion habe.

Stetige Wahrscheinlichkeitsverteilungen

Falls Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle X} eine stetige Wahrscheinlichkeitsdichte Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle f} hat, kann man obigen Erwartungswert mittels dieser Dichte schreiben und erhält für die momenterzeugende Funktion

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle M_X(t) = \int_{-\infty}^\infty e^{tx} f(x)\,\mathrm{d}x}
Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle = \int_{-\infty}^\infty \left( 1+ tx + \frac{t^2}{2!}x^2 + \dotsb\right) f(x)\,\mathrm{d}x}
Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle = 1 + t m_X^1 + \frac{t^2}{2!}m_X^2 +\dotsb}

gegeben, wobei Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle m_X^k} das -te Moment von Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle X} ist. Der Ausdruck Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle M_X\left(-t\right)} ist also gerade die zweiseitige Laplacetransformation des durch Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle X} festgelegten Wahrscheinlichkeitsmaßes.

Bemerkungen

Ursprung des Begriffs der momenterzeugenden Funktion

Die Bezeichnung momenterzeugend bezieht sich darauf, dass die Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle k} -te Ableitung von Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle M_X} im Punkt 0 (Null) gleich dem Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle k} -ten Moment der Zufallsvariablen Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle X} ist:

.

Das liest man direkt an der oben angegebenen Potenzreihe ab. Durch die Angabe aller nicht verschwindenden Momente ist jede Wahrscheinlichkeitsverteilung vollständig festgelegt, falls die momenterzeugende Funktion auf einem offenen Intervall Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle (-\varepsilon,\varepsilon)} existiert Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle (\varepsilon > 0)} .

Zusammenhang mit der charakteristischen Funktion

Die momenterzeugende Funktion steht in engem Zusammenhang mit der charakteristischen Funktion Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \varphi_X(t) = E\left(e^{\mathrm{i}t X}\right)} . Es gilt Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \varphi_X(t) = M_{iX}(t)=M_X(\mathrm{i}t)} , falls die momenterzeugende Funktion existiert. Im Gegensatz zur momenterzeugenden Funktion existiert die charakteristische Funktion für beliebige Zufallsvariablen.

Zusammenhang mit der wahrscheinlichkeitserzeugenden Funktion

Des Weiteren besteht noch ein Zusammenhang zur wahrscheinlichkeitserzeugenden Funktion. Diese ist jedoch nur für -wertige Zufallsvariablen definiert und zwar als Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle m_X(t)=\operatorname{E}(t^X) } . Damit gilt Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle m_X(e^t)=M_X(t)} für diskrete Zufallsvariablen.

Zusammenhang mit der kumulantenerzeugenden Funktion

Die kumulantenerzeugende Funktion wird als natürlicher Logarithmus der momenterzeugenden Funktion definiert. Aus ihr wird der Begriff der Kumulante abgeleitet.

Summen unabhängiger Zufallsvariablen

Die momenterzeugende Funktion einer Summe unabhängiger Zufallsvariablen ist das Produkt ihrer momenterzeugenden Funktionen: Sind Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle X_1, \dotsc, X_n} unabhängig, dann gilt für Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle Y = X_1 + \dotsb + X_n}

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle M_Y(t) = E(e^{tY}) = E(e^{tX_1+ \ldots + tX_n}) = E(e^{tX_1}\cdots e^{tX_n}) = E(e^{tX_1})\cdots E(e^{tX_n}) = M_{X_1}(t) \cdots M_{X_n}(t)} ,

wobei beim vorletzten Gleichheitszeichen verwendet wurde, dass der Erwartungswert eines Produktes unabhängiger Zufallsvariablen gleich dem Produkt ihrer Erwartungswerte ist.

Eindeutigkeitseigenschaft

Ist die momenterzeugende Funktion einer Zufallsgröße Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle X} in einer Umgebung von endlich, so bestimmt sie die Verteilung von Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle X} eindeutig.[2] Formal bedeutet das:

Seien Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle X} und Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle Y} zwei Zufallsgrößen mit momenterzeugenden Funktionen Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle M_X} und Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle M_Y} derart, dass es ein gibt mit Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle M_X (s), M_Y (s) < \infty} für alle Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle s \in (-\varepsilon,\varepsilon)} . Dann gilt Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle P_X = P_Y} genau dann, wenn Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle M_X(s) = M_Y(s)} für alle Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle s \in (-\varepsilon,\varepsilon)} gilt.

Beispiele

Für viele Verteilungen kann man die momenterzeugende Funktion direkt angeben:

Verteilung Momenterzeugende Funktion MX(t)
Bernoulli-Verteilung
Betaverteilung Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \mathrm{B}(a,b,p,q)} [3] Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle M_X(t) = 1+\sum_{n=1}^{\infty} \left( \prod_{k=0}^{n-1} \frac{a+k}{a+b+k} \right) \frac{t^n}{n!}}
Binomialverteilung Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \mathrm{B}(p,n)} Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle M_X(t) = (1-p+pe^t)^n}
Cauchy-Verteilung Die Cauchy-Verteilung hat keine momenterzeugende Funktion.[4]
Chi-Quadrat-Verteilung Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \chi_n^2} [5]
Erlang-Verteilung für
Exponentialverteilung für
Gammaverteilung
Geometrische Verteilung mit Parameter
Gleichverteilung über
Laplace-Verteilung mit Parametern Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \mu, \sigma} [6] Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle M_X(t) = \frac{e^{\mu t}}{1-\sigma^2 t^2}}
Negative Binomialverteilung Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle M_{X}(t) = \left(\frac{p e^{t}}{1-(1-p) e^{t}}\right)^{r}} für Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle t<|\ln(1-p)|}
Normalverteilung Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \mathrm{N}(\mu,\sigma^2)} Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle M_X(t) = \exp{\left(\mu t+\frac{\sigma^2 t^2}{2}\right)}}
Poisson-Verteilung mit Parameter Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \lambda}

Verallgemeinerung auf mehrdimensionale Zufallsvariablen

Die momenterzeugende Funktion lässt sich auf -dimensionale reelle Zufallsvektoren Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \mathbf{X} = (X_1, \dotsc , X_\ell)} wie folgt erweitern:

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle M_{\mathbf{X}}(t)= M_{\mathbf{X}}(t_1, \dots, t_l)=\operatorname{E}(e^{ \langle t,\mathbf{X}\rangle})=\operatorname{E}\left( \prod_{j=1}^\ell e^{t_jX_j}\right)} ,

wobei Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \langle t,\mathbf{X}\rangle = \sum\limits_{j=1}^{\ell} t_j X_j} das Standardskalarprodukt bezeichnet.

Wenn die Komponenten des Zufallsvektors paarweise voneinander unabhängig sind, dann ergibt sich die momentgenerierende Funktion als Produkt aus den momentgenerierenden Funktionen von eindimensionalen Zufallsvariablen:

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle M_{\mathbf{X}}(t_1, \dots, t_l)=\operatorname{E}(e^{ \langle t,\mathbf{X}\rangle})= \prod_{j=1}^\ell \operatorname{E}\left( e^{t_jX_j}\right) = \prod_{j=1}^\ell M_{X_j}(t_j)} .

Siehe auch

Literatur

  • Klaus D. Schmidt: Maß und Wahrscheinlichkeit. Springer, Berlin / Heidelberg 2009, ISBN 978-3-540-89729-3, S. 378 ff.

Einzelnachweise

  1. Robert G. Gallager: Stochastic Processes. Cambridge University Press, 2013, ISBN 978-1-107-03975-9, Kapitel 1.5.5: Moment generating functions and other transforms
  2. J. H. Curtiss: A Note on the Theory of Moment Generating Functions. In: The Annals of Mathematical Statistics. Band 13, Nr. 4, 1942, ISSN 0003-4851, S. 430–433, abgerufen 30. Dezember 2012, (PDF; 402 kB).
  3. Otto J.W.F. Kardaun: Classical Methods of Statistics. Springer-Verlag, 2005, ISBN 3-540-21115-2, S. 44.
  4. Allan Gut: Probability: A Graduate Course. Springer-Verlag, 2012, ISBN 978-1-4614-4707-8, Kapitel 8, Beispiel 8.2.
  5. A. C. Davison: Statistical Models. Cambridge University Press, 2008, ISBN 978-1-4672-0331-9, Kapitel 3.2.
  6. Hisashi Tanizaki: Computational Methods in Statistics and Econometrics. Verlag Taylor and Francis, 2004, ISBN 0-203-02202-5, Abschnitt 2.2.11.