Verallgemeinerter Laplace-Operator
Verallgemeinerte Laplace-Operatoren sind mathematische Objekte, welche in der Differentialgeometrie insbesondere in der Globalen Analysis untersucht werden. Die hier behandelten Operatoren sind Verallgemeinerungen des aus der reellen Analysis bekannten Laplace-Operators. Diese Verallgemeinerungen sind notwendig, um den Laplace-Operator auf riemannsche Mannigfaltigkeit definieren zu können. Eine wichtige Rolle spielen diese Operatoren in den Beweisen für den Atiyah-Singer-Indexsatz und den Atiyah-Bott-Fixpunktsatz.
Definition
Sei eine n-dimensionale riemannsche Mannigfaltigkeit, ein hermitesches Vektorbündel und ein geometrischer Differentialoperator zweiter Ordnung. Dieser heißt verallgemeinerter Laplace-Operator, falls für sein Hauptsymbol
für und gilt. Die Norm wird durch die riemannsche Metrik induziert und daher ist auch die Definition abhängig von der Metrik.
Beispiele
Im Folgenden werden einige bekannte Beispiele verallgemeinerter Laplace-Operatoren vorgestellt. Dazu sei wieder wie in der Definition eine -dimensionale, kompakte riemannsche Mannigfaltigkeit und ein Vektorbündel.
Laplace-Beltrami-Operator
Definition
Der Laplace-Beltrami-Operator ist definiert durch
für zweimal stetig differenzierbare Funktionen . Dabei bezeichnet den Gradienten der Funktion , ein Vektorfeld auf . Die Divergenz eines Vektorfeldes auf an der Stelle ist definiert als die Spur der linearen Abbildung , , wobei der Levi-Civita-Zusammenhang auf ist. Hat man als Definitionsbereich eine offene Teilmenge des , betrachtet als Mannigfaltigkeit über sich, so ist der Zusammenhang die gewöhnliche Richtungsableitung und die aus der reellen Analysis bekannte Divergenz eines Vektorfeldes. In diesem Fall erhält man den bekannten Laplace-Operator.
Lokale Koordinaten
Es seien lokale Koordinaten auf und die zugehörigen Basisfelder des Tangentialbündels. Mit für seien die Komponenten der riemannschen Metrik bezüglich dieser Basis bezeichnet.
Die Darstellung des Gradienten in lokalen Koordinaten lautet dann
- .
Hierbei ist die inverse Matrix der Matrix Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle (g_{ij})} .
Die Darstellung der Divergenz eines Vektorfelds Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \textstyle X = \sum\limits_i X^i \tfrac{\partial }{\partial x_i}} ist
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \operatorname{div} X = \frac{1}{\sqrt{\det g}} \sum_i \frac{\partial}{\partial x_i} \left(\sqrt {\det g} X^i\right)} ,
wobei Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \det g} die Determinante der Matrix Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle (g_{ij})} ist.[1]
Setzt man diese Gleichungen zusammen, so erhält man die lokale Darstellung
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \Delta f = \operatorname{div}(\nabla f) = \frac{1}{\sqrt {\det g}} \sum_{i,j}\frac{\partial }{\partial x_i} \left(\sqrt{\det g}\, g^{ij} \frac{\partial f}{\partial x_j} \right)}
des Laplace-Beltrami-Operators bezüglich der Metrik Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle g} . Setzt man in dieser Formel für den Laplace-Beltrami-Operator die Darstellung des euklidischen metrischen Tensors in Polar-, Zylinder- oder Kugelkoordinaten ein, so erhält man die Darstellung des üblichen Laplace-Operators in diesen Koordinatensystemen.
Hodge-Laplace-Operator
Sei Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \textstyle \mathcal{A}(M) := \bigoplus_{i=1}^n \mathcal{A}^i(M)} der Raum der Differentialformen über Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle M} und Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \mathrm{d} : \mathcal{A}^i(M) \to \mathcal{A}^{i+1}(M)} die äußere Ableitung. Die adjungierte äußere Ableitung wird mit Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \delta} bezeichnet. Dann heißt der Operator
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \Delta := \mathrm{d} \delta + \delta \mathrm{d} = (\mathrm{d} + \delta)^2}
Hodge-Laplace- oder Laplace-de-Rham-Operator und ist ein verallgemeinerter Laplace-Operator.[2] Die Namen stammen daher, dass dieser Operator in der klassischen Hodge-Theorie und dem damit eng verbundenen De-Rham-Komplex Anwendung findet.
Dirac-Laplace-Operator
Ein Dirac-Operator
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle D : \Gamma^\infty(M,E) \to \Gamma^\infty(M,E)}
ist gerade so definiert, dass er durch quadrieren einen verallgemeinerten Laplace-Operator induziert. Das heißt, Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle D^2 : \Gamma^\infty(M,E) \to \Gamma^\infty(M,E)} ist ein verallgemeinerter Laplace-Operator und wird Dirac-Laplace-Operator genannt. Diese Laplace-Operatoren spielen eine wichtige Rolle im Beweis des Indexsatzes.
Bochner-Laplace-Operator
Definition
Der Bochner-Laplace-Operator wird mit dem metrischen Zusammenhang Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \nabla^E \colon \Gamma(M,E) \to \Gamma(T^*M \otimes E)} auf dem Vektorbündel Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle E} definiert. Sei außerdem Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \nabla^{T^*M} \colon \Gamma(M,T^*M) \to \Gamma(T^*M \otimes T^*M)} der Levi-Civita-Zusammenhang und Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \nabla^{T^*M \otimes E}} der durch Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \nabla^E} und Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \nabla^{T^*M}} induzierte Zusammenhang auf dem Bündel Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle T^*M \otimes E}
dann ist der Bochner-Laplace-Operator durch
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \Delta^E \cdot := - \operatorname{Tr}_g\left(\nabla^{T^*M \otimes E} \nabla^E \cdot \right)\,. }
definiert. Die Abbildung Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \operatorname{Tr}_g} ist dabei die Tensorverjüngung bezüglich der riemannschen Metrik.[3]
Eine äquivalente Definition des Bochner-Laplace-Operators ist
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \Delta^E := - (\nabla^E)^* \nabla^E.}
Dabei ist Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle (\nabla^E)^*} der adjungierte Operator bezüglich der riemannschen Metrik Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle g} .
Lokale Darstellung
Wählt man als Zusammenhang den Levi-Civita-Zusammenhang so erhält man in lokalen Koordinaten mit dem orthonormalen Rahmen Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle e_1 , \ldots , e_n} die Darstellung[3]
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \Delta^E = - \sum_{i = 1}^n \left( \nabla^E_{e_i} \nabla^E_{e_i} - \nabla^E_{\nabla_{e_i}e_i}\right)\,. }
Eigenschaften
- Ein verallgemeinerter Laplace-Operator ist ein geometrischer Differentialoperator der Ordnung zwei.
- Da ein verallgemeinerter Laplace-Operator, wie in der Definition gefordert, das Hauptsymbol Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle |\xi|^2} hat, ist er ein elliptischer Differentialoperator.
- Jeder Differentialoperator zweiter Ordnung mit positiv definitem Hauptsymbol ist ein verallgemeinerter Laplace-Operator bezüglich einer geeigneten riemannschen Metrik auf der Mannigfaltigkeit und einer geeigneten hermiteschen Metrik auf dem Vektorbündel.
- Sind Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \phi, \psi \in \Gamma^{\infty}(M,E)} glatte Schnitte, so gilt
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle g(\Delta^E \phi,\psi) = g(\nabla^E\phi, \nabla^E \psi)} .
- Der Operator Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \Delta^E} ist nichtnegativ und wesentlich selbstadjungiert bezüglich Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle L^2(X,E)} . Die Definition des Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle L^2} auf Mannigfaltigkeiten kann in dem Artikel über Dichtebündel nachgelesen werden.
- Jeder verallgemeinerte Laplace-Operator Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle H} bestimmt eindeutig einen Zusammenhang Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \nabla^E} auf dem Vektorbündel Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle E} und einen Schnitt Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle B \in \Gamma^\infty(M,\operatorname{End}(E))} , so dass Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle H = \Delta^E - B} gilt, wobei Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \Delta^E} der Bochner-Laplace-Operator ist. Jeder verallgemeinerte Laplace-Operator stimmt also mit dem Bochner-Laplace-Operator bis auf eine Störung der Ordnung Null überein.
Quellen
- Isaac Chavel: Eigenvalues in Riemannian Geometry (= Pure and Applied Mathematics 115). Academic Press, Orlando FL u. a. 1984, ISBN 0-12-170640-0.
- Liviu I. Nicolaescu: Lectures on the geometry of manifolds. 2nd edition. World Scientific Pub Co., Singapore u. a. 2007, ISBN 978-981-270853-3.
- Martin Schottenloher: Geometrie und Symmetrie in der Physik. Leitmotiv der Mathematischen Physik (= Vieweg-Lehrbuch Mathematische Physik). Vieweg, Braunschweig u. a. 1995, ISBN 3-528-06565-6.
Siehe auch
Einzelnachweise
- ↑ Torsten Fließbach: Allgemeine Relativitätstheorie. 4. Auflage, Elsevier – Spektrum Akademischer Verlag, 2003, Kapitel 17 Verallgemeinerte Vektoroperationen ISBN 3-8274-1356-7
- ↑ H. B. Lawson, M. Michelsohn: Spin Geometry. Princeton University Press, 1989, ISBN 978-0691085425, S. 123
- ↑ a b Nicole Berline, Ezra Getzler, Michèle Vergne: Heat kernels and Dirac operators (= Grundlehren der mathematischen Wissenschaften 298). Berlin u. a. Springer 1992, ISBN 0-387-53340-0, S. 63–64.