Lense-Thirring-Effekt
Der Lense-Thirring-Effekt, auch Frame-Dragging-Effekt, ist ein im Jahr 1918 von dem Mathematiker Josef Lense und dem Physiker Hans Thirring[1] vorhergesagter physikalischer Effekt, der sich aus der allgemeinen Relativitätstheorie ergibt. Er fällt in die Klasse der gravitomagnetischen Effekte. Der Lense-Thirring-Effekt beschreibt den Einfluss einer rotierenden Masse auf das lokale Inertialsystem. Dies kann man sich vereinfacht so vorstellen, dass die rotierende Masse den Raum um sich herum wie eine zähe Flüssigkeit mitzieht. Dadurch wird die Raumzeit verdrillt. Es handelt sich somit um einen gravitomagnetischen Effekt.
Geschichte
Bei der Ableitung durch Thirring spielte die Korrespondenz mit Einstein (1917) eine wichtige Rolle, und Einstein berechnete den Effekt schon im Rahmen seiner Vorläufertheorien für die allgemeine Relativitätstheorie.[2] Die Wurzel dieser Überlegungen liegt im Machschen Prinzip, das Einstein darin realisiert sah.
Experimenteller Nachweis
LAGEOS
Derzeit wird noch diskutiert, ob den Wissenschaftlern um Ignazio Ciufolini von der Universität Lecce und Erricos Pavlis von der University of Maryland in Baltimore im Jahr 2004 der experimentelle Nachweis des Effektes gelungen ist. Sie vermaßen dafür die Bahnen der geodätischen Satelliten LAGEOS 1 und 2 präzise. Deren Position und Lage sollte von der sich drehenden Masse der Erde beeinflusst werden. Die Genauigkeit der Tests mit den LAGEOS-Satelliten ist derzeit umstritten, Schätzungen der Messunsicherheit reichen von 10 %[3] bis 20–30 %[4][5][6] und sogar darüber hinaus. 2013 erschien ein Übersichtsartikel von G. Renzetti über Versuche, den Lense-Thirring-Effekt mit Erdsatelliten zu messen.[7]
Die beiden Satelliten wurden 1976 und 1992 in eine Umlaufbahn gebracht, um kleine Effekte auf der Erdoberfläche wie das Driften der Kontinente, nacheiszeitliche Hebungsvorgänge und jahreszeitliche Schwankungen der Erdrotation zu bestimmen. Ihre Position lässt sich mit Hilfe reflektierter Laserstrahlen auf 1 bis 3 cm genau messen, so dass die Verdrillung der Raumzeit mit den rund 400 kg schweren Erdtrabanten quantitativ bestimmt werden kann. Dabei bewegen sich gemäß der theoretischen Vorhersage der allgemeinen Relativitätstheorie die Verdrehungswinkel der Raumzeit durch die rotierende Erdmasse bei etwa 12 Millionstel Grad bzw. −39,2 Millibogensekunden pro Jahr. Wenn der Effekt tatsächlich existiert, so müssen die beiden Satelliten den gekrümmten Flugbahnen der verdrillten Raumzeit folgen.
Trotz möglicher Fehlerquellen durch das uneinheitliche Schwerefeld der Erde reichten die zentimetergenauen Positionsbestimmungen der LAGEOS-Satelliten nach Meinung der Experimentatoren aus, um den relativistischen Effekt nachweisen zu können.
Gravity Probe B
Ein weiteres Nachweis-Experiment wurde zwischen dem 28. August 2004 und dem 14. August 2005 mit Hilfe des NASA-Forschungssatelliten Gravity Probe B durchgeführt. Auch diesem Experiment ist mittlerweile, trotz einer unerwarteten Fehlerquelle, nach Ansicht der Experimentatoren der Nachweis des Lense-Thirring-Effekts gelungen. Bald wurde klar, dass die angestrebte Genauigkeit von 1 % der Effektgröße um mindestens einen Faktor 2 verfehlt worden war.[8] Die endgültige Auswertung ergab einen Wert, der bis auf 5 % der Vorhersage entsprach.[9] Die letzten Auswertungen (April 2011) der Daten ergaben eine erneute Bestätigung des Effektes.[10][11]
LARES
Im Februar 2012 startete an Bord der ersten Rakete vom Typ Vega die LARES-Mission mit dem primären Ziel der endgültigen Bestätigung des Effektes. Die Mission war auf einen Betrieb bis 2016 ausgelegt[12], wird aber darüber hinaus fortgesetzt. Nach Auswertung der Daten der ersten 3,5 Jahre werden die Vorhersagen der allgemeinen Relativitätstheorie mit erhöhter Genauigkeit bestätigt.[13][14] Die tatsächlich erreichbare Genauigkeit wird kontrovers diskutiert.[15][16][4][17][18][5][3][19][20][21][22][23]
LARES 2
Am 13. Juli 2022 wurde um 15:13 MESZ mit dem Jungfernflug einer Vega-C der italienische Forschungssatellit LARES 2 ins All gebracht,[24] der ebenfalls den Lense-Thirring-Effekt messen soll. LARES 2 ist ein passiver, mit Laserspiegeln besetzter Satellit in Form einer Kugel mit einem Durchmesser von 36,4 cm.
Auswirkungen
Der Lense-Thirring-Effekt wird für die enorme Leuchtkraft von Quasaren verantwortlich gemacht. Er ermöglicht dem Plasma der Akkretionsscheibe, das in das meist rotierende Schwarze Loch im Zentrum des Quasars fällt, eine stabile Umlaufbahn knapp außerhalb des Schwarzschildradius. Dadurch kann das Plasma heißer werden als bei einem nicht rotierenden Schwarzen Loch und folglich stärker strahlen.
Außerdem sind die zusammen mit dem Plasma verdrehten Magnetfelder wahrscheinlich verantwortlich für die starke Beschleunigung und Fokussierung der Jets.
Genauere Formulierung
Die Rotationswinkelgeschwindigkeit Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \omega} des Raumes um eine rotierende und geladene zentrale Masse mit dem Spinparameter Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle a} und der elektrischen Ladung Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle Q} ergibt sich in Boyer-Lindquist-Koordinaten mit Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle G=M=c=K=1} mit
mit den Termen
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \chi =\left(a ^2+r^2\right)^2-a ^2 \ \sin ^2 \theta \ \Delta }
Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle t} bezeichnet dabei die Zeitkoordinate eines Beobachters in weiter Entfernung von der rotierenden Masse. Der Winkel Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \theta} bezeichnet dabei den Breitengrad mit dem Nullpunkt am Nordpol, den kerr'schen Rotationsparameter der zentralen Masse, und den radialen Abstand vom Schwerpunkt derselben.
Die lokale Geschwindigkeit mit der sich ein vor Ort befindlicher Beobachter gegen den Strudel der Raumzeit bewegen müsste, um relativ zum weit entfernten Beobachter stationär zu bleiben, ist
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle v_{\perp} = \omega \ \bar{R} \ \varsigma}
mit
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \bar R = \sqrt{|g_{\phi \phi}|} = \sqrt{\frac{\chi}{\Sigma}} \ \sin \theta}
für den Gyrationsradius[25] und
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \varsigma = \frac{{\rm d}t}{{\rm d}\tau} = \sqrt{|g^{t t}|} = \sqrt{\frac{\chi}{\Delta \ \Sigma}}}
für die gravitative Zeitdilatation, wobei Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \tau} die Zeitkoordinate eines korotierenden, aber drehimpulsfreien Beobachters vor Ort[26] bezeichnet.
Ein weit entfernter stationärer Beobachter beobachtet hingegen eine Transversalgeschwindigkeit von
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle u_{\perp} = \omega \ \sqrt{x^2+y^2}}
an einer lokal ruhenden Messboje, wobei sich die kartesischen Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle x} - und Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle y} -Werte aus der Regel
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle x = \sqrt {r^2 + a^2} \sin\theta \ \cos\phi \ , \ y = \sqrt {r^2 + a^2} \sin\theta \ \sin\phi \ , \ z = r \cos\theta }
ergeben.
Literatur
- Remo Ruffini, Costantino Sigismondi: Nonlinear gravitodynamics – the Lense–Thirring effect; a documentary introduction to current research. World Scientific, Singapore 2003, ISBN 981-238-347-6.
- Bernhard Wagner: Gravitoelektromagnetismus und Lense-Thirring Effekt : Bewegung eines Testteilchens in der linearisierten Kerrmetrik ; mit mathematisch-physikalischen Grundlagen zur allgemeinen Relativitätstheorie. Dipl.-Arb. Univ. Graz, 2002.
Siehe auch
Einzelnachweise
- ↑ Josef Lense, Hans Thirring: Über den Einfluss der Eigenrotation der Zentralkörper auf die Bewegung der Planeten und Monde nach der Einsteinschen Gravitationstheorie. In: Physikalische Zeitschrift. 19, 1918, S. 156–163.
- ↑ Herbert Pfister, On the history of the so-called Lense-Thirring effect, General Relativity and Gravitation, Band 39, 2007, S. 1735–1748
- ↑ a b I. Ciufolini, A. Paolozzi, E. C. Pavlis, J. C. Ries, R. Koenig, R. A. Matzner, G. Sindoni, H. Neumayer: General Relativity and John Archibald Wheeler (= Astrophysics and Space Science Library. Band 367). SpringerLink, 2010, Gravitomagnetism and Its Measurement with Laser Ranging to the LAGEOS Satellites and GRACE Earth Gravity Models, S. 371–434, doi:10.1007/978-90-481-3735-0_17.
- ↑ a b L. Iorio: An Assessment of the Systematic Uncertainty in Present and Future Tests of the Lense-Thirring Effect with Satellite Laser Ranging. In: Space Science Reviews. Band 148, 2009, S. 363, doi:10.1007/s11214-008-9478-1, arxiv:0809.1373, bibcode:2009SSRv..148..363I.
- ↑ a b L. Iorio, H. I. M. Lichtenegger, M. L. Ruggiero, C. Corda: Phenomenology of the Lense-Thirring effect in the solar system. In: Astrophysics and Space Science. Band 331, Nr. 2, 2011, S. 351, doi:10.1007/s10509-010-0489-5, arxiv:1009.3225, bibcode:2011Ap&SS.331..351I.
- ↑ L. Iorio, M. L. Ruggiero, C. Corda: Novel considerations about the error budget of the LAGEOS-based tests of frame-dragging with GRACE geopotential models. In: Acta Astronautica. Band 91, Nr. 10-11, 2013, S. 141, doi:10.1016/j.actaastro.2013.06.002.
- ↑ G. Renzetti: History of the attempts to measure orbital frame-dragging with artificial satellites. In: Central European Journal of Physics. Band 11, Nr. 5, Mai 2013, S. 531–544, doi:10.2478/s11534-013-0189-1.
- ↑ Statusbericht der Stanford University über Gravity Probe B (Frühling 2008)
- ↑ C. W. F. Everitt u. a.: Gravity Probe B: Final results of a space experiment to test general relativity. In: Physical Review Letters.
- ↑ Erde verbiegt die Raumzeit wie der Ball ein Laken. In: Welt online. 6. Mai 2011.
- ↑ GP-B STATUS UPDATE — May 4, 2011 einstein.stanford.edu, abgerufen am 13. Mai 2011.
- ↑ Webseite der A.S.I. (Memento des Originals vom 13. Februar 2012 im Internet Archive) Info: Der Archivlink wurde automatisch eingesetzt und noch nicht geprüft. Bitte prüfe Original- und Archivlink gemäß Anleitung und entferne dann diesen Hinweis. zur LARES Mission
- ↑ Herbert J. Kramer: Status of LARES mission. In: eoportal.org. Abgerufen am 4. Februar 2018 (englisch).
- ↑ Ignazio Ciufolini et al.: A test of general relativity using the LARES and LAGEOS satellites and a GRACE Earth gravity model. In: Eur. Phys. J. C. Band 76, Nr. 3, 2016, S. 120, doi:10.1140/epjc/s10052-016-3961-8.
- ↑ L. Iorio: Towards a 1 % measurement of the Lense-Thirring effect with LARES? In: Advances in Space Research. Band 43, Nr. 7, 2009, S. 1148–1157, doi:10.1016/j.asr.2008.10.016, arxiv:0802.2031, bibcode:2009AdSpR..43.1148I.
- ↑ L. Iorio: Will the recently approved LARES mission be able to measure the Lense–Thirring effect at 1%? In: General Relativity and Gravitation. Band 41, Nr. 8, 2009, S. 1717–1724, doi:10.1007/s10714-008-0742-1, arxiv:0803.3278, bibcode:2009GReGr..41.1717I.
- ↑ Lorenzo Iorio: Recent Attempts to Measure the General Relativistic Lense-Thirring Effect with Natural and Artificial Bodies in the Solar System. In: PoS ISFTG. Band 017, 2009, arxiv:0905.0300, bibcode:2009isft.confE..17I.
- ↑ L. Iorio: On the impact of the atmospheric drag on the LARES mission. In: Acta Physica Polonica B. Band 41, Nr. 4, 2010, S. 753–765 (edu.pl).
- ↑ A. Paolozzi, I. Ciufolini, C. Vendittozzi: Engineering and scientific aspects of LARES satellite. In: Acta Astronautica. Band 69, Nr. 3–4, 2011, ISSN 0094-5765, S. 127–134, doi:10.1016/j.actaastro.2011.03.005.
- ↑ I. Ciufolini, A. Paolozzi, E. C. Pavlis, J. Ries, R. Koenig, G. Sindoni, H. Neumeyer: Testing Gravitational Physics with Satellite Laser Ranging. In: European Physical Journal Plus. Band 126, Nr. 8, 2011, S. 72, doi:10.1140/epjp/i2011-11072-2, bibcode:2011EPJP..126...72C.
- ↑ I. Ciufolini, E. C. Pavlis, A. Paolozzi, J. Ries, R. Koenig, R. Matzner, G. Sindoni, K. H. Neumayer: Phenomenology of the Lense-Thirring effect in the Solar System: Measurement of frame-dragging with laser ranged satellites. In: New Astronomy. Band 17, Nr. 3, 3. August 2011, S. 341–346, doi:10.1016/j.newast.2011.08.003, bibcode:2012NewA...17..341C.
- ↑ G. Renzetti: Are higher degree even zonals really harmful for the LARES/LAGEOS frame-dragging experiment? In: Canadian Journal of Physics. Band 90, Nr. 9, 2012, S. 883–888, doi:10.1139/p2012-081, bibcode:2012CaJPh..90..883R.
- ↑ G. Renzetti: First results from LARES: An analysis. In: New Astronomy. Band 23-24, 2013, S. 63–66, doi:10.1016/j.newast.2013.03.001, bibcode:2013NewA...23...63R.
- ↑ Vega-C successfully completes inaugural flight. European Space Agency, 13. Juli 2022, abgerufen am 14. Juli 2022.
- ↑ Scott A. Hughes: Nearly horizon skimming orbits of Kerr black holes, Seite 5 ff.
- ↑ Andrei & Valeri Frolov: Rigidly rotating ZAMO surfaces in the Kerr spacetime (arxiv:1408.6316v1)