Brutreaktor

aus Wikipedia, der freien Enzyklopädie

Ein Brutreaktor ist ein Kernreaktor, der zur Energiegewinnung mit gleichzeitiger Erzeugung weiteren spaltbaren Materials dient. Ein nicht spaltbares Nuklid wird in ein spaltbares umgewandelt, das dann (nach Aufarbeitung und Einbringung in neue Brennelemente) anschließend als Kernbrennstoff verwendet werden kann. Diese Umwandlung (als Konversion, manchmal auch als Brüten bezeichnet, siehe Konversionsrate) findet zwar in jedem Kernreaktor statt, aber von einem „Brutreaktor“ oder „Brüter“ spricht man erst dann, wenn er mehr Brennstoff herstellt, als er in der gleichen Zeit selbst verbraucht.

Datei:Fluessigmetall-Brutreaktor.svg
Schneller Brutreaktor in Becken-Bauweise (links) und in Schleifen-Bauweise (rechts)

Der erste Brutreaktor war der Experimental Breeder Reactor I. Er war 1951 der erste Kernreaktor der Welt, mit dessen Wärmeleistung elektrischer Strom erzeugt wurde. Heute sind die einzigen Brutreaktoren im kommerziellen Betrieb der BN-600 und der BN-800 in Russland (Stand 2015). Einige Versuchs-Brutreaktoren sind in Betrieb, Bau oder Planung, vor allem innerhalb des Forschungsverbunds Generation IV International Forum.

Zweck der Brutreaktor-Entwicklung ist die weitaus bessere Ausnutzung der Kernbrennstoffe. Aus natürlichem Uran könnte mit Brutreaktoren rund 60-mal mehr Energie gewonnen werden als mit Leichtwasserreaktoren.[1] Die Brutreaktorentwicklung wurde in den 1960er bis 1980er Jahren in vielen Industrieländern staatlich gefördert, beispielsweise im bundesdeutschen Projekt Schneller Brüter[2] von 1962 bis 1989.

Als die USA und Russland ihre Atomwaffen entwickelten, wurden zu diesem Zweck spezielle Reaktoren (z. B. der ADE-Reaktor) gebaut, die den einzigen Zweck hatten, Plutonium zu erzeugen. Diese nutzten moderierte, also thermische Neutronen und zählen nicht zu den Brutreaktoren.

Typen von Brutreaktoren

Man unterscheidet zwei Typen von Brutreaktoren und bezeichnet sie nach dem Energiespektrum der genutzten Neutronen:

Schnelle Brüter
Schnelle Brüter arbeiten mit Uran-238 (oder seltener Thorium-232) als Brutstoff und mit schnellen Neutronen, wie sie bei Kernspaltungen freigesetzt werden, also ohne Moderator. Als Kernbrennstoff dient Uran-Plutonium-Mischoxid (MOX). Die Brutzone (siehe unten) enthält Natururan- oder abgereichertes Uranoxid, das überwiegend aus 238U besteht. Der schnelle Brüter ermöglicht es somit, die Vorkommen von Natururan über 50-mal effizienter auszunutzen, benötigt hierzu für viele Reaktorarten allerdings den Aufbau einer Plutoniumwirtschaft. Seine Bezeichnung bedeutet nicht, dass er „schnell brütet“, sondern verweist nur auf die schnellen Neutronen.
Thermische Brüter
Thermische Brüter arbeiten mit Thorium als Brutstoff und mit überwiegend thermischen Neutronen. Nach einer Erstbefüllung mit angereichertem Uranoxid, Plutoniumoxid oder MOX wird aus 232Th durch Neutronenanlagerung und Betazerfall spaltbares 233U. Diese Technologie ist wegen der großen Thoriumvorkommen interessant, da diese etwa dreimal größer sind als die Uranvorkommen.

Zu erwähnen sind Konzepte für sog. „Fortschrittliche Druckwasserreaktoren(Advanced Pressurized Water Reactors)[3][4] oder Siedewasserreaktoren „mit reduzierter Moderation“.[5] Sie würden mit konventionellen Brennstoffen und Kühlmitteln arbeiten, aber durch ihre Konstruktion hohe Konversionsraten von 0,7 bis 1,0 erreichen (daher gelegentlich auch als Hochkonverter bezeichnet), wären also „beinahe“ Brutreaktoren.

Schneller Brüter

Aufbau des Reaktors

Der Reaktorkern besteht aus vielen senkrecht stehenden, mit z. B. Uran-Plutonium-Mischoxid gefüllten Edelstahlröhren (Brennstäben). Die Stäbe sind zu Brennelementen gebündelt und füllen insgesamt einen etwa zylindrischen Bereich von z. B. 3 m Höhe und 5 m Durchmesser aus. Die Steuerung der Kettenreaktion (siehe auch Kritikalität) erfolgt durch Regelstäbe aus Bor-Stahl oder einem anderen Neutronen absorbierenden Material.

Der Reaktorkern ist aufgeteilt in eine innere Spalt- und eine äußere Brutzone. Das Kühlmittel – das bei diesen Reaktoren nicht, wie im Leichtwasserreaktor, als Moderator wirken darf – ist ein flüssiges Metall wie Natrium oder Kalium. Bis etwa 1970 wurden auch Konzepte für gasgekühlte Brutreaktoren untersucht, kamen aber nicht zum Einsatz.

Brennstoff-Brutprozess

Das natürliche Uran besteht zu 99,3 % aus dem nicht spaltbaren Isotop 238U und nur zu 0,7 % aus dem spaltbaren Isotop 235U. Für den Betrieb der meisten Kernspaltungsreaktoren (z. B. Leichtwasserreaktor) muss es vor Herstellung der Brennelemente technisch aufwändig auf etwa 3 bis 4 % 235U angereichert werden.

Im Betrieb jedes Uranreaktors wird ein Teil des vorhandenen 238U durch Neutroneneinfang in 239U umgewandelt. Dieses geht von selbst durch zwei aufeinander folgende β-Zerfälle in das spaltbare 239Pu über, das teilweise parallel zum 235U noch im Reaktor wieder gespalten[6] wird, teilweise aber auch später nach Wiederaufarbeitung des gebrauchten Brennstoffes zu neuen Mischoxid-Brennelementen verarbeitet werden kann.

Das „Brüten“ im eigentlichen Sinne, also ein Überschuss des so erzeugten über den zugleich verbrauchten Brennstoff, gelingt aber nur in einem Reaktor, der ohne Moderator arbeitet, einem schnellen Brüter, denn nur bei der Spaltung durch ein schnelles Neutron ist die durchschnittliche Zahl neu freigesetzter Neutronen pro Spaltung dafür hoch genug (siehe Kernspaltungsprozess im Brutreaktor). Der Überschuss drückt sich darin aus, dass das Brutverhältnis (manchmal auch Brutrate oder Konversionsrate genannt), die Zahl neu erzeugter Brennstoffatome pro verbrauchtem Brennstoffatom, über 1,0 liegt.

Der schnelle Brüter heißt also nicht so, weil er „schnell brütet“, sondern weil er zur Kernspaltung schnelle statt thermischer (abgebremster) Neutronen verwendet.

Bessere Ausnutzung der Kernbrennstoffvorräte

Für das 238U gibt es nur wenige andere Nutzanwendungen neben dessen Einsatz im Brutreaktor (u. a. Uranmunition). Durch eine Verbundwirtschaft aus Brutreaktoren, Wiederaufarbeitung und Leichtwasserreaktoren könnte der Uranvorrat der Erde etwa 60-mal so viel Energie liefern wie bei der ausschließlichen Spaltung von 235U. In der Theorie ergäbe die restlose Ausnutzung des 238U sogar einen über 100-mal höheren Nutzfaktor, der jedoch technisch derzeit nicht realisierbar ist.

Die Nutzung des Metalls Thorium 232Th, das als Brutstoff von 1983 bis 1989 bereits im Reaktor THTR-300 verwendet wurde und den Brennstoff 233U ergibt, würde die Ressourcen-Lage der Kernkraft nochmals bedeutend verbessern, da die natürlichen Thorium-Vorkommen die des Urans um ein Vielfaches übersteigen.

Spaltzone

Schnelle Neutronen lösen neue Kernspaltungen mit wesentlich geringerer Wahrscheinlichkeit (siehe Wirkungsquerschnitt) aus als thermische Neutronen. Deshalb muss im Vergleich zu moderierten Reaktortypen die Spaltstoffkonzentration in der Spaltzone erhöht werden. Der Spaltstoff ist Mischoxid aus 15 bis 20 % Plutoniumoxid und 80 bis 85 % Uranoxid; die Konzentration der spaltbaren Isotope ist damit etwa zehnmal höher als bei den Leichtwasserreaktoren.[7] Als Kühlmittel – das im schnellen Reaktor keine Moderatorwirkung haben darf, also eine genügend hohe Massenzahl haben muss – verwenden die bisherigen Brutreaktoren flüssiges Natrium; untersucht wurden auch Konzepte mit Gaskühlung. Die ersten Versuchs-Brutreaktoren in den USA[8] und in der damaligen Sowjetunion verwendeten noch Quecksilber als Kühlmittel, was u. a. wegen Korrosion jedoch zu Problemen führte.

Brutmantel

Der Brutmantel (engl. breeding blanket) ist um die Spaltzone herum angeordnet und umgibt diese vollständig. Die oberen und unteren Teile eines Brennstabes der Spaltzone sind nicht wie der mittlere Teil mit Brennstoff-Mischoxid, sondern mit abgereichertem Uranoxid als Brutstoff gefüllt; die radial weiter außen liegenden Stäbe enthalten dieses über ihre gesamte Länge. Abgereichertes Uran ist der beim Uran-Anreicherungsprozess zwangsläufig anfallende Reststoff.

Kernspaltungsprozess im Brutreaktor

Das „Brüten“ erfordert, dass die Spaltung eines Atomkerns durchschnittlich mehr als zwei Neutronen freisetzt, denn ein Neutron wird zum Auslösen der nächsten Spaltung benötigt (Kritikalität der Kettenreaktion) und ein weiteres Neutron muss einen neuen spaltbaren Kern erzeugen, um den gespaltenen Kern zu ersetzen, also ein Brutverhältnis von 1,0 zu erreichen. Hinzu kommen aber unvermeidliche Neutronenverluste durch Leckage nach außen und durch Absorptionsvorgänge, die weder zu Spaltung noch zu Pu-Produktion führen, nämlich Absorption im Strukturmaterial, in Spaltprodukten, im Kühlmittel und in den Steuerstäben.

Mit einigen Vereinfachungen lassen sich die Verhältnisse gut durch den Generationenfaktor (eta) beschreiben, die Zahl neu freigesetzter Neutronen pro im Spaltstoff absorbiertem Neutron. Diese Zahl ist etwas kleiner als die der pro Spaltung freigesetzten Neutronen, weil auch im Spaltstoff nicht jede Absorption zur Spaltung führt. Bei Spaltung durch thermische Neutronen liegt Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \eta} für die leicht spaltbaren Nuklide 233U, 235U und 239Pu nur knapp über 2,0. Bei Spaltung durch schnelle Neutronen der Energie 1 MeV dagegen setzt 239Pu etwa 2,8 Neutronen frei.[9] Dadurch kann auch bei Verlusten von rund 0,5 Neutronen pro im Brennstoff absorbiertem Neutron noch deutlich mehr als 1 neuer spaltbarer Kern pro gespaltenem Kern erzeugt werden.

Energiegewinnung

Die bei der Spaltung eines Kerns entstehenden meist zwei Bruchstücke („Spaltfragmente“) tragen den Energiegewinn der Reaktion, insgesamt rund 200 MeV, als kinetische Energie. Sie werden im umgebenden Brennstoffmaterial abgebremst und erhitzen dieses. Der primäre Natriumkühlkreis nimmt die Wärme auf und gibt sie über einen Wärmetauscher an einen Sekundärnatriumkühlkreis weiter. Dieser Sekundärkreislauf produziert in einem Dampferzeuger Frischdampf, der – wie in einem konventionellen, kohle- oder ölbefeuerten Kraftwerk – die Turbine antreibt. Die Turbine wandelt die Strömungsenergie des Dampfes in Rotationsenergie, die ein Generator in elektrische Energie umsetzt. Der aus der Turbine austretende Abdampf wird in einem Kondensator wieder verflüssigt und dem Dampfkreislauf zugeleitet. Der Kondensator wird dabei durch einen Außenkühlkreislauf gekühlt, der zum Beispiel die Wärme an ein Fließwasser abgibt.

Kühlkreisläufe

Die Brutreaktortechnik basiert in einigen Bereichen auf den Grundlagen der Leichtwasserreaktortechnik, weist jedoch einige wesentliche Unterschiede auf. Der Wärmeträger Natrium zeichnet sich durch hohe Wärmeleitfähigkeit und einen großen nutzbaren Temperaturbereich aus. Es schmilzt bei 98 °C und siedet bei 883 °C. Wegen dieses hohen Siedepunkts ist im Natriumkreislauf ein Druck von nur etwa 10 bar nötig, was einen gewissen Sicherheitsvorteil darstellt.[10][11][12]

Im Unterschied zum Leichtwasserreaktor wird zwischen den Natriumkreislauf, der die Brennelemente kühlt (Primärkreislauf), und den Wasser-Dampf-Kreislauf noch ein zweiter Natriumkreislauf (Sekundärkreislauf) eingeschaltet. Das verringert zwar den Wirkungsgrad, ist aber aus Sicherheitsgründen notwendig, damit selbst im Fall einer Dampferzeuger-Leckage nur nichtradioaktives Natrium mit Wasser reagiert. Ein oder mehrere Zwischenwärmetauscher übertragen die Wärme vom Primär- auf das Sekundärkühlmittel. In den deutschen Brutreaktor-Konstruktionen wurde das so genannte Loop-System verwendet, bei dem alle Pumpen und Wärmetauscher räumlich vom Reaktor getrennt sind und der Reaktortank oberhalb des Natriums mit Stickstoff gefüllt ist. Beim Pool-System, welches in anderen Ländern häufiger verwendet wird, befindet sich der Primärkreislauf einschließlich Primärpumpen und Zwischenwärmetauschern im Reaktortank selbst, wobei hier Argon als Schutzgas im Tank verwendet wird. In jedem Fall muss bei abgeschaltetem Reaktor das Natrium in den Kühlkreisläufen durch Fremdheizung flüssig gehalten werden.

Sicherheit – Vor- und Nachteile

Nachteile

Im Vergleich etwa zu Leichtwasserreaktoren erfordert der Betrieb eines Brutreaktors andere Sicherheitseinrichtungen. Physikalische Gründe hierfür sind vor allem der nicht „automatisch“ negative Dampfblasenkoeffizient, außerdem auch der gegenüber Uran geringere Anteil verzögerter Neutronen aus der Spaltung.

Natrium-Dampfbildung oder -verlust macht den Reaktor nicht automatisch unterkritisch. Die Unterkritikalität muss stattdessen in einem solchen Fall mit technischen Mitteln genügend schnell und zuverlässig hergestellt werden. Dazu haben Brutreaktoren außer den normalen Steuerstäben weitere unabhängige Sätze von Sicherheits- oder Abschaltstäben, die im Bedarfsfall in den Reaktorkern hineinfallen oder hinein „geschossen“ werden können (Scram). Ausgelöst wird eine solche Abschaltung durch empfindliche Systeme zur Feststellung von Übertemperaturen und von Siedevorgängen.

Der beim Uran-Plutonium-Mischoxidbrennstoff kleinere verzögerte Neutronenanteil bedeutet einen geringeren Abstand zwischen den Betriebspunkten „Verzögert kritisch“ und „Prompt kritisch“ (siehe Kritikalität). Dem wird durch entsprechend präzise Messungen des Neutronenflusses und schnelle Reaktion des Steuerstabsystems Rechnung getragen.

Die große Menge an Plutonium, das verglichen mit Uran wesentlich gesundheitsgefährdender ist, ist eine weitere Herausforderung.

Ein Risiko der Brütertechnik mit Natriumkühlung liegt auch im großtechnischen Umgang mit dem Kühlmittel, das im Kontakt mit Luft oder Wasser Brände auslösen kann.

Vorteile

Die Natriumkühlung kann im Prinzip aufgrund der Siedetemperatur von Natrium von 890 °C bei Normaldruck betrieben werden. Im Vergleich dazu arbeiten Leichtwasserreaktoren bei über 100 bar Druck, was bei Verlust des Kühlmittels zu verheerenden Dampfexplosionen führen kann.

Aufgrund der chemischen Reaktivität von Natrium werden viele Spaltprodukte bei einer eventuellen Kernschmelze gebunden, insbesondere Iod 131.

Die übliche "Pool-Bauweise", bei der sich der Reaktorkern in einem großen Tank voller Natrium befindet, ermöglicht aufgrund der hohen Wärmekapazität und des hohen Siedepunktes von Natrium eine passive Abfuhr der Restzerfallswärme bei einer Schnellabschaltung. Bei Verwendung metallischer Brennstoffe (wie beispielsweise beim EBR-II im Idaho National Laboratory) führt die hohe Wärmeleitfähigkeit von Brennstoff und Kühlmittel bei schnellen Temperaturanstiegen zu einer starken Dämpfung der Wärmeleistung durch den Dopplereffekt. Eine Kernschmelze bei Ausfall der Kühlung beispielsweise durch einen Stromausfall wird so passiv verhindert. Beim EBR-II wurde dies experimentell verifiziert.[13]

Verwendung

Derzeit werden weltweit mit dem BN-600 (600 MW) und seit 2014 mit dem BN-800 im Kernkraftwerk Belojarsk zwei stromerzeugende schnelle Brutreaktoren in Russland betrieben (Stand 2015). In der Volksrepublik China und in Indien sind Anlagen im Bau.

In Japan gab es 2007 – nach der Stilllegung der Anlage Monju – Entwicklungsarbeiten für einen neuen kommerziellen Brutreaktor.[14][15]

Der erste deutsche natriumgekühlte Versuchsreaktor KNK-I (Kompakte Natriumgekühlte Kernreaktoranlage Karlsruhe) wurde in den Jahren 1971 bis 1974 im Kernforschungszentrum Karlsruhe gebaut. Die Anlage wurde 1977 zu einem schnellen Brüter mit der Bezeichnung KNK-II umgerüstet und war bis 1991 in Betrieb.

Der Kernreaktor Phénix in Frankreich war in kommerziellem Betrieb zwischen 1973 und 2010 mit einer elektrischen Leistung von 250 MW.

Am Niederrhein bei Kalkar wurde ab 1973 ein industrielles Brutreaktor-Prototypkraftwerk mit der Bezeichnung SNR-300 gebaut. Nach zahlreichen Protesten und dem Reaktorunfall bei Tschernobyl 1986 kam es nie zur Inbetriebnahme oder gar Stromerzeugung, die für 1987 vorgesehen war.[16]

Einige Brutreaktor-Demonstrationsanlagen, z. B. das Kernkraftwerk Creys-Malville (Superphénix) in Frankreich und Monju in Japan, wurden wegen Störfällen (weitestgehend durch natriumbedingte Korrosionsprobleme, Undichtigkeiten infolge der hohen Kühlmitteltemperaturen u. a. hervorgerufen) sowie Widerstand in der Bevölkerung endgültig stillgelegt. Das ist allerdings, wie auch das Aufgeben des deutsch-belgisch-niederländischen Brutreaktorprojektes Kalkar, mit darauf zurückzuführen, dass bei der bisherigen Uran-Versorgungslage noch kein wirtschaftlicher Druck besteht, diese kostspieligere Variante der Kernenergiegewinnung einzuführen.

In Indien soll 2021 der PFBR mit einer Leistung von 500 MW in Betrieb genommen werden[17], welcher Thorium statt abgereichertes Uran im Brutmantel enthält. Indien hat die größten Thoriumvorräte weltweit und ist Vorreiter bei dieser Technologie.

Beispiele für Brutreaktoren

Betrieb Land Ort Name elektr. Leistung
in MW
Bemerkung
von bis
1946 1952 USA New Mexico Clementine 0,025 Erster Brutreaktor, diente 6 Jahre als Neutronenquelle für die Forschung
1951 1964 USA Idaho EBR-I 0,2 Zweiter Brutreaktor, lieferte die erste nuklear erzeugte, elektrische Energie (auch Chicago Pile 4), partielle Kernschmelze 1955 (INES: 4)
1961 1964 USA New Mexico LAMPRE Schmelze aus Plutonium und Eisen als Spalt- und Brutstoff mit Natrium als Kühlmittel
1961 1994 USA Idaho EBR-II 20
1962 1977 Großbritannien Dounreay DFR 14
1963 1972 USA Detroit FERMI 1 61 Untersuchung der Wirtschaftlichkeit, partielle Kernschmelze 1966 (INES: 4), Stilllegung wegen Problemen 1972
1967 1983 Frankreich Cadarache Rapsodie 40 Testreaktor
1973 1999 Kasachstan Aqtau BN-350 150 Erster Brutreaktor der russischen BN-Baureihe
1974 2010 Frankreich Marcoule (Gard) Phénix 250 Am 1. Februar 2010 offiziell abgeschaltet[18]
1974 1994 Großbritannien Dounreay PFR 250
1977 1991 Deutschland Karlsruhe KNK I+II 20 Testreaktor
1978 Japan Jōyō 100 Forschungsreaktor
1980 1992 USA Washington FFTF 400 Experimenteller Reaktor, 1992 in Hot-Standby abgeschaltet und seit 2002 im Abbau befindlich
1980 heute Russland Belojarsk 3 BN-600 600 Seit Abschaltung von Creys-Malville 1996 und bis zur Inbetriebnahme von Belojarsk 4 im Jahr 2014 weltgrößter Brüter; kein Containment
1985 heute Indien Kalpakkam FBTR 13 Testreaktor, thermische Leistung 40 MW
1986 1996 Frankreich Creys-Mépieu Superphénix 1180 1996 nach Zwischenfällen vom Netz genommen (INES: 2), nach Regierungsentscheidung 1998 auch aus Kostengründen endgültig abgeschaltet, seit 2006 im Abbau.
1994 2017[19] Japan Fukui Monju 280 Nach einem schweren Störfall im Jahr 1995 wurde der Testbetrieb am 6. Mai 2010 wieder aufgenommen, infolge weiterer Zwischenfälle jedoch inzwischen beendet.
Deutschland Kalkar SNR-300 327 Bauarbeiten 1991 eingestellt, wurde nie in Betrieb genommen
2010 heute Volksrepublik China CIAE nahe Peking CEFR 20 „China Experimental Fast Reactor“, Testreaktor, seit 21. Juli 2010 in Betrieb[20]
2014 heute Russland Belojarsk 4 BN-800 800 Produktivreaktor, kritisch seit Juni 2014, ab 2015 in Betrieb[21]
[2022] Indien Kalpakkam PFBR 500 Prototyp / Demonstrationsreaktor, Umwandlung von Thorium in U-233[22], Inbetriebnahme für 2022[veraltet] geplant[23]
[2023] Volksrepublik China Xiapu-1 CFR-600 „China Demonstration Fast Reactor“, geplant für 2023[24]
[2026] Volksrepublik China Xiapu-2 CFR-600 geplant für 2026[25]

Thermische Brüter

Literatur

  • A. M. Judd: Fast Breeder Reactors. Pergamon Press, 1981, ISBN 0-08-023220-5.
  • Günther Kessler: Nuclear Fission Reactors: Potential Role and Risks of Converters and Breeders. Springer Wien, Wien 2013, ISBN 978-3-7091-7624-5.

Siehe auch

Weblinks

Wiktionary: Brutreaktor – Bedeutungserklärungen, Wortherkunft, Synonyme, Übersetzungen

Einzelnachweise

  1. Fast Neutron Reactors. Webseite der World Nuclear Association. Abgerufen am 17. Juli 2015. (englisch)
  2. W. Marth: Zur Geschichte des Projekts Schneller Brüter. Kernforschungszentrum Karlsruhe, Bericht KfK-3111 (1981).
  3. Cornelis H. Broeders: Entwicklungsarbeiten für die neutronenphysikalische Auslegung von fortschrittlichen Druckwasserreaktoren (FDWR) mit kompakten Dreiecksgittern in hexagonalen Brennelementen. Kernforschungszentrum Karlsruhe, Bericht KfK-5072, 1992.
  4. Claus Petersen: Literaturübersicht mechanischer und physikalischer Eigenschaften von Hüllrohrwerkstoffen für fortgeschrittene Druckwasserreaktoren (FDWR) bei hoher Temperatur. Kernforschungszentrum Karlsruhe, Bericht KfK-3469 (1983).
  5. J. Yamashita, F. Kawamura, T. Mochida: Next-generation Nuclear Reactor Systems for Future Energy. (PDF; 174 kB). In: Hitachi Review. 53, 2004, S. 131–135.
  6. Der Fachausdruck der Kerntechnik lautet gespalten, nicht gespaltet.
  7. Erich Übelacker: WAS IST WAS. Band 3: Atom Energie. Tessloff Verlag, Nürnberg 1995, ISBN 3-7886-0243-0, S. 29.
  8. Merle E Bunker: Early Reactors From Fermi’s Water Boiler to Novel Power Prototypes. In: Los Alamos Science Report. 1983. library.lanl.gov
  9. A. M. Judd: Fast Breeder Reactors. Pergamon Press, 1981, ISBN 0-08-023220-5, S. 3.
  10. Florian Grenz: Seminar über Energie und Gesellschaft. Thema: Kernenergie (PDF, 1,1 MB), S. 8.
  11. Informationskreis KernEnergie Kernenergie Basiswissen (Memento vom 17. Juni 2012 im Internet Archive) (PDF, 11,1 MB), S. 54.
  12. Friedhelm Noack: Einführung in die elektrische Energietechnik – Schneller Brüter. Hanser Verlag, 2003, ISBN 3-446-21527-1, S. 110.
  13. Nuclear Engineering Division, "Passively safe reactors rely on nature to keep them cool", Reprint der Zeitschrift Argonne Logos - (Winter 2002 -- vol. 20, no. 1) [1]1
  14. Handelsblatt: Japan lässt neuen Brutreaktor entwickeln.
  15. Webseite Mitsubishi Heavy Industries, abgerufen im Januar 2020
  16. W. Marth: Der Schnelle Brüter SNR 300 im Auf und Ab seiner Geschichte. Kernforschungszentrum Karlsruhe, Bericht KfK-4666, 1992.
  17. India's prototype breeder reactor is delayed again. 12. März 2020, abgerufen am 27. März 2021 (amerikanisches Englisch).
  18. IAEA Reaktorverzeichnis (Memento vom 9. Mai 2003 im Internet Archive)
  19. Leistungsdaten im Power Reactor Information System der IAEA (englisch)
  20. Nuclear Engineering International: Criticality for China’s first fast reactor. (Memento vom 6. September 2012 im Webarchiv archive.today) (23. Juli 2010)
  21. freiraum-magazin.com (Memento vom 5. Januar 2016 im Internet Archive)
  22. The Hindu:Nuclear Plant near Chennai All Set for Milestone
  23. Government of India, Department of Atomic Energy, Lok Sabha, starred Question No. 246 to be answered on 15.12.2021, BHAVINI FAST BREEDER REACTOR. 15. Dezember 2021, abgerufen am 12. Januar 2022.
  24. World Nuclear News: China begins building pilot fast reactor (Memento vom 4. Februar 2018 im Internet Archive) (29. Dezember 2017)
  25. China starts building second CFR-600 fast reactor. In: World Nuclear News. 29. Dezember 2020, abgerufen am 11. März 2021 (englisch).