MIMO (Nachrichtentechnik)
MIMO (englisch Multiple Input Multiple Output) bezeichnet in mehreren Bereichen drahtloser Übertragung in der Nachrichtentechnik ein Verfahren bzw. ein Übertragungs-System für die Nutzung mehrerer Sende- und Empfangsantennen zur drahtlosen Kommunikation.
Dies ist die Grundlage für spezielle Codierungsverfahren, die nicht nur die zeitliche, sondern auch die räumliche Dimension zur Informationsübertragung nutzen (Space-Time Coding). Dadurch lassen sich Qualität (Bitfehlerhäufigkeit) und Datenrate einer drahtlosen Verbindung deutlich verbessern. MIMO-Systeme können wesentlich mehr bit/s pro genutztem Hz Bandbreite übertragen und haben somit eine höhere spektrale Effizienz als konventionelle SISO-Systeme (englisch Single Input, Single Output) mit jeweils einer Antenne auf Sender- und Empfängerseite oder SIMO-Systeme (englisch Single Input, Multiple Output) mit einer Antenne auf der Senderseite und mehreren Antennen auf der Empfängerseite.
Die MIMO-Technik wurde und wird ständig weiterentwickelt. Im Jahr 2014 stellten mehrere Router-Hersteller Multi-User-MIMO (MU-MIMO) vor. Mit dieser Technik kann ein Access Point oder Router mehreren Clients gleichzeitig verschiedene Datensätze schicken. Der Funkkanal wird so wieder schneller frei. Die Effizienz des Systems erhöht sich dadurch.[1]:180
Neben dem hier beschriebenen Mehrgrößensystem MIMO gibt es Eingrößensysteme (SISO) bei denen sowohl Sender als auch Empfänger jeweils eine Antenne nutzen und „gemischte“ Systeme (SIMO und MISO (englisch Multiple Input, Single Output)). Bei MISO nutzt beispielsweise ein Router drei Antennen und ein Smartphone nur eine Antenne.
Funktionsprinzip
Smart Antennas / SIMO
Die Verwendung von mehreren Antennen bzw. Empfangskomponenten an einem Ende der Kommunikationsverbindung hat in den letzten Jahrzehnten große Verbreitung gefunden. Intelligent (engl. smart) ist an diesen Antennen die nachgeschaltete Signalverarbeitung, die die empfangenen Signale zusammensetzt. Insbesondere in Mobilfunksystemen wie GSM ist die Verwendung mehrerer Empfangsantennen auf der Seite der Basisstation (BTS) häufig anzutreffen, weil dies deutliche Vorteile bietet: Mehrere Antennen können mehr Energie aus dem elektromagnetischen Feld entnehmen als eine einzelne (Gruppengewinn). Reflexionen auf dem Ausbreitungsweg verursachen Mehrwegeausbreitung, die durch destruktive Interferenz beim Empfänger zu Signalauslöschung (engl. fading) führen kann. Wenn mehrere räumlich getrennte Empfangsantennen in einer Umgebung mit starker Mehrwegeausbreitung verwendet werden, ist das Fading an den einzelnen Antennen statistisch unabhängig und die Wahrscheinlichkeit, dass alle Antennen gleichzeitig von Fading betroffen sind, ist sehr gering. Dieser Effekt heißt räumliche Diversität (engl. spatial diversity) und führt zu einem Diversitätsgewinn, der jedoch nicht linear mit der Anzahl der Antennen wächst, sondern recht schnell zur Sättigung kommt. Ein weiterer Ansatz ist die Strahllenkung (engl. beamforming), bei der die Hauptkeule der Antenne gezielt auf die Gegenstelle gerichtet wird. Alle diese Verfahren können die Zuverlässigkeit einer Verbindung deutlich erhöhen, nicht aber die mittlere Kanalkapazität.
Kanalmatrix
Die Vorteile von MIMO gehen über die der Smart Antennas hinaus. Betrachtet man ein System mit Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle n_T} Sendeantennen und Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle n_R} Empfangsantennen, so ergeben sich Fehler beim Parsen (Konvertierungsfehler. Der Server („https://wikimedia.org/api/rest_“) hat berichtet: „Cannot get mml. Server problem.“): {\displaystyle n_{R}\times n_{T}} einzelne Kanäle. Der resultierende Gesamtkanal lässt sich als eine Kanalmatrix Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \underline{H}} mit komplexen Einträgen Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle h_{ij}} darstellen:
- Fehler beim Parsen (Konvertierungsfehler. Der Server („https://wikimedia.org/api/rest_“) hat berichtet: „Cannot get mml. Server problem.“): {\displaystyle {\underline {H}}={\begin{bmatrix}h_{11}&\cdots &h_{1n_{T}}\\h_{21}&\cdots &h_{2n_{T}}\\\vdots &\ddots &\vdots \\h_{n_{R}1}&\cdots &h_{n_{R}n_{T}}\end{bmatrix}}\ {\mathrm {mit} }\;h_{ij}=\alpha +{\mathrm {j} }\beta }
Diese unterschiedlichen Kanäle können zur selben Zeit mit derselben Frequenz genutzt werden, die Sendeleistung wird auf die Antennen aufgeteilt. In einem System mit zwei Teilnehmern können die verschiedenen Modi zur Steigerung der Datenrate genutzt werden, in einem System mit vielen Nutzern kann man dies aber auch als Vielfachzugriffsverfahren einsetzen, um z. B. in einem Mobilfunknetz die Signale der einzelnen Nutzer zu trennen (alternativ zum heute genutzten FDMA/TDMA in GSM bzw. CDMA in UMTS).
Vereinfachendes Beispiel: In einem System mit vier Sende- und vier Empfangsantennen kann ein Bitstrom in vier separate Bitströme aufgeteilt werden, die parallel übertragen werden. Auf der Empfängerseite empfängt jede Antenne ein Summensignal der Sendeantennen. Um den Bitstrom zu decodieren und wieder zusammenzusetzen, muss ein Gleichungssystem mit vier Gleichungen für vier Unbekannte gelöst werden, was nur möglich ist, wenn die vier Gleichungen linear unabhängig sind, also die Kanalmatrix vollen Rang hat. Physikalisch bedeutet das, dass die einzelnen Kanäle sehr unterschiedlich sein müssen, was zum Beispiel in Umgebungen mit starker Mehrwegeausbreitung der Fall ist. Ist diese Bedingung erfüllt, kann das System innerhalb der gleichen Zeit die vierfache Menge Daten übertragen, ohne zusätzliche Bandbreite zu benötigen, was die spektrale Effizienz um den Faktor vier erhöht. Man erzielt somit einen Gewinn durch Raummultiplex (engl. spatial multiplexing).
Kanalkapazität
Die Kanalkapazität gibt an, wie viel bit/s/Hz maximal über einen gestörten Kanal mit beliebig kleiner Fehlerwahrscheinlichkeit übertragen werden können. Für MIMO-Systeme ist sie definiert als
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle C = \log_2 \ \lbrack{\det (\underline{I}_{n_R} + \frac{\rho}{n_T}\,\underline{H}\underline{H}^H)\rbrack}} ,
wobei Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \rho} das mittlere SNR am Empfänger, Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle (\cdot)^H} die Adjungierte und die Einheitsmatrix bezeichnet. In einem System mit einer großen Anzahl von Antennen ergibt sich eine mittlere Kanalkapazität von
Theoretisch besteht hier die Möglichkeit, die Kanalkapazität über Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle n_T} und Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle n_R} beliebig zu erhöhen. Preis dafür ist jedoch der wachsende Aufwand durch die Zahl der Antennen und die Komplexität des HF-Empfängers und der Signalverarbeitung. Außerdem ist diese informationstheoretische Größe lediglich eine obere Schranke, die in der Praxis schwer zu erreichen ist. Zusätzlich gilt die Näherungsformel nur für unkorrelierte, also unabhängige Signalausbreitungspfade (Kanäle). In der Praxis sind die Ausbreitungspfade des Signals jedoch immer korreliert, und zwar umso stärker, je mehr Antennen verwendet werden.
Anwendungen
Die MIMO-Technik findet bei WLAN, WiMax und verschiedenen Mobilfunkstandards wie LTE Anwendung.
WLAN
Die volle MIMO-Unterstützung wird nur nutzbar, wenn sowohl Sender als auch Empfänger das MIMO-Verfahren beherrschen. Nutzt beispielsweise der Access Point MIMO mit drei Antennen (3x3 MIMO), dem Client stehen aber nur zwei Antennen zur Verfügung (2x2 MIMO), so erhöht sich der Nettodurchsatz bei 802.11ac-Komponenten durch 3x2 MIMO gegenüber einem 2x2-Stream um ca. 20 %.[1]:179
MIMO-Hardware der ersten Generation
Für die ersten MIMO-Geräte basierend aus dem Frühjahr 2005 versprachen deren Anbieter wesentlich höhere Funkabdeckungen im Vergleich zum bisherigen 802.11g-Standard. Beispiele für Produktnamen waren oder sind bei Netgear „RangeMax“ oder „SRX“ bei Linksys.
MIMO-Hardware der zweiten Generation
Im Dezember 2005 kam eine neue Router-Generation (zunächst nur von der Firma Netgear) mit dem neuen „Airgo“-Chipsatz auf den Markt. Dieser neue Chipsatz mit MIMO-Technik ermöglichte erstmals ähnliche Netto-Geschwindigkeiten wie im LAN via Kupferkabel. Die Netzwerkkomponenten erreichten eine Geschwindigkeit von bis zu 240 Mbit/s brutto durch gleichzeitige Nutzung von zwei Funkkanälen.
MIMO-Technik im IEEE-802.11n-WLAN-Standard
Im Frühjahr 2006 wurden zum ersten Mal WLAN-Komponenten auf der CeBit 2006 vorgestellt, welche mit dem WLAN-Standard 802.11n betrieben werden können. Diese Produkte hatten dank neuer Chipsätze und angepasster technischer Spezifikationen wie einer erweiterten MIMO-Technik Datendurchsatzraten von bis zu 300 Mbit/s (brutto). Die technischen Spezifikationen dieser Router und WLAN-Adapter beruhten zunächst nur auf der Vorabversion 802.11n-Draft. Viele Hardware-Komponenten wurden mit Hilfe von Firmware- oder Software-Updates mit dem 2009 verabschiedeten 802.11n-Standard voll kompatibel.
Mit Hilfe der MIMO-Technik sind mit Stand 2012 beim 802.11n-WLAN-Standard Datendurchsatzraten bis zu 600 Mbit/s (brutto) möglich. Die Bruttorate von 600 Mbit/s kann nur im 5 GHz-Band mit einer Kanalbandbreite von 40 MHz und jeweils vier Antennen (4x4 MIMO) auf Sender- und Empfängerseite erreicht werden.[1] Der 11n-Standard empfiehlt das MIMO-OFDM-Verfahren.
WiMax und Mobilfunknetze
MIMO-Techniken sind im 2009 verabschiedeten WiMax-Standard IEEE 802.16 enthalten. Der Standard 802.16e empfiehlt das MIMO-OFDMA-Verfahren.
Verschiedene Mobilfunknetze wie LTE nutzen ebenfalls MIMO-Verfahren. Mit MIMO ist es den Mobilfunkanbietern möglich, hohe Datengeschwindigkeiten bei geringer Fehlerrate anzubieten.[2]
Siehe auch
Literatur
- G. J. Foschini und M. J. Gans: On Limits of Wireless Communications in a Fading Environment When Using Multiple Antennas. (PDF, englisch) In: Wireless Personal Communications. Vol. 6, No. 3, März 1998, S. 311–335
- D. Gesbert und J. Akhtar: Breaking the barriers of Shannon’s capacity: An overview of MIMO wireless systems. (PDF; 451 kB, englisch) In: Telenor’s Journal: Telektronikk. 1/2002, S. 53–64
- D. Gesbert, M. Shafi, D. Shiu, P. Smith und A. Naguib: From Theory to Practice: An Overview of MIMO Space-Time Coded Wireless Systems. (PDF; 953 kB, englisch) In: IEEE Journal on Selected Areas in Communications. Vol. 21, No. 3, 2003.
- M. Jankiraman: Space-Time Codes and MIMO Systems. Artech House Publishers, Boston 2004, ISBN 1-58053-865-7
- J. Lindner: Informationsübertragung. Grundlagen der Kommunikationstechnik. Springer, Berlin 2005, ISBN 3-540-21400-3
- T. Kaiser: Rudelfunk. In: c’t. Magazin für Computertechnik. 8/2005. Heise Zeitschriften Verlag, S. 132–135, ISSN 0724-8679
- MIMO-OFDM: Space Time Coding & Spatial Multiplexing. In: irt.de. IRT GmbH, München. 2010. Archiviert vom Original am 25. Februar 2010.
- N. Razavi-Ghods, Sana Salous: Wideband MIMO channel characterization in TV studiosand inside buildings in the 2.2–2.5 GHz frequency band (englisch, PDF) In: wiley.com. RADIO SCIENCE vol. 44. S. 1–13. 2009.
- Professor Sana Salous: The Provision of an Initial Studyof Multiple In Multiple OutTechnology - Section 1: Executive Summary (englisch, PDF) In: ofcom.org.uk. S. 1–33. Juli 2003. Archiviert vom Original am 5. September 2009.