Magnetisches Vektorpotential

aus Wikipedia, der freien Enzyklopädie
(Weitergeleitet von Magnetisches Potenzial)
Physikalische Größe
Name magnetisches Vektorpotential
Formelzeichen
Größen- und
Einheitensystem
Einheit Dimension
SI V·s·m-1 M1 L1 T−2 I−1

Das magnetische Vektorpotential , oft auch nur als Vektorpotential bezeichnet, ist in der klassischen Elektrodynamik ein Vektorfeld dessen Rotation die magnetische Flussdichte liefert

.

Historisch wurde es als mathematisches Hilfsmittel entwickelt, um die magnetische Flussdichte leichter zu beschreiben. Es lässt sich u. a. auch dazu verwenden, die zur Beschreibung des elektromagnetischen Felds verwendeten Maxwell-Gleichungen zu entkoppeln und dadurch leichter lösbar zu machen.

Obwohl es zunächst nur als mathematisches Hilfsmittel eingeführt wurde, kommt ihm in der Quantenmechanik physikalische Realität zu, wie das Aharonov-Bohm-Experiment zeigt.

Das magnetische Vektorpotential hat die Einheit .

Definition

Das Vektorpotential wird so definiert, dass

gilt. Hierbei ist die Rotation des Vektorpotentials. Durch diesen Ansatz ist die Divergenz von Null, da für alle zweifach stetig differenzierbaren Vektorfelder. Dies wird durch die Maxwellgleichungen gefordert.

In der Elektrodynamik gilt die obige Formel unverändert, wohingegen für das elektrische Feld

gilt. Hierbei ist das skalare elektrische Potential.

Diese beiden Ansätze, zusammen mit der Lorenz-Eichung, werden benutzt, um die Maxwellgleichungen zu entkoppeln. In der Magnetostatik wird für gewöhnlich die Coulomb-Eichung benutzt, die den statischen Grenzfall der Lorenz-Eichung darstellt.

Skalares Potential und Vektorpotential werden in der Relativitätstheorie und der Quantenelektrodynamik zum Viererpotential

zusammengefasst.

Eigenschaften

  • Das Vektorpotential ist nur bis auf ein Gradientenfeld bestimmt, weil die Rotation eines Gradientenfeldes immer verschwindet. Für jede skalare Funktion gilt also
Verschieden geeichte Vektorpotentiale führen also auf dasselbe magnetische Feld. Dies wird als Eichinvarianz bezeichnet.
  • Das Vektorpotential ist als Vektorfeld nicht konservativ. Andernfalls wäre es durch den Gradienten eines skalaren Feldes darstellbar und es würde gelten:
.
  • In der Elektrodynamik, d. h. bei nicht-statischen Verhältnissen, benutzt man dagegen meist die folgende Lorenz-Eichung, die für die Berechnung elektromagnetischer Wellenfelder nützlich ist:
Dabei ist das skalare Potential (s. u.) und die Lichtgeschwindigkeit.
.
Daraus erhält man folgende einfache Darstellung des Vektorpotentials über eine Faltung (siehe Greensche Funktion):
wobei zu beachten ist, dass diese Beziehung nur gilt, wenn die Stromdichte im Unendlichen verschwindet.
,
wobei der D’Alembert-Operator ist.
Die inhomogenen Lösungen dieser Gleichung sind das retardierte bzw. avancierte Vektorpotential
, mit .
  • Die drei Komponenten , und des Vektorpotentials und das skalare Potential können in der Elektrodynamik zu einem Vierervektor zusammengefasst werden, der sich bei den Lorentz-Transformationen der Speziellen Relativitätstheorie Albert Einsteins wie das Quadrupel transformiert. ist dabei die Lichtgeschwindigkeit.

Elektrisches Vektorpotential

Bei der Berechnung von Feldern in ladungs- und leitungsstromfreien Gebieten, z. B. in Hohlleitern begegnet man dem elektrischen Vektorpotential , es hat die Einheit einer Linienladungsdichte .

Aufgrund der Quellenfreiheit der betrachteten Felder gilt

      bzw.
      sowie
.

Um einen funktionalen Zusammenhang zwischen und zu erhalten, subtrahiert man die Gleichungen und voneinander und erhält:

Das Wirbelfeld nennt man elektrisches Vektorpotential. Es beschreibt nur zeitlich veränderliche elektrische Felder.

Beziehungen zwischen Vektor- und Skalarpotential

Gemäß dem helmholtzschen Theorem kann (fast) jedes Vektorfeld als Superposition zweier Komponenten und aufgefasst werden, deren erste der Gradient eines Skalarpotentials ist, die zweite dagegen die Rotation eines Vektorpotentials :

Ist ein konservatives Kraftfeld, in dem die Kraft dem Prinzip des kleinsten Zwanges folgend stets der Richtung des maximalen Anstiegs des Potentials entgegengerichtet ist, gilt alternativ die Schreibweise

Literatur

  • Adolf J. Schwab: Begriffswelt der Feldtheorie. Springer Verlag, 2002. ISBN 3-540-42018-5.