Konservative Kraft
Konservative Kräfte sind in der Physik Kräfte, die längs eines beliebigen geschlossenen Weges (Rundweg) keine Arbeit verrichten. An Teilstrecken aufgewendete Energie wird an anderen Strecken wieder zurückgewonnen. Das heißt, die kinetische Energie eines Probekörpers bleibt ihm am Ende erhalten.
Beispiele konservativer Kräfte sind zum einen solche, die wie die Gravitationskraft oder Coulombkraft des elektrischen Feldes durch konservative Kraftfelder (s. u.) vermittelt werden, zum anderen aber auch Kräfte wie z. B. Federkräfte[1], die nicht durch Kraftfelder im eigentlichen Sinn vermittelt werden. Da einer konservativen Kraft ein Potential zugeordnet werden kann, kann die Kraft nur vom Ort abhängen und nicht wie z. B. dissipative Kräfte von der Geschwindigkeit.
Bekanntestes Beispiel einer durch ein Kraftfeld vermittelten konservativen Kraft ist die Erdanziehungskraft. Die Kraft Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle F = -mg} ist gerade die negative Ableitung der potentiellen Energie z. B. als Näherung nahe der Erdoberfläche nach der Höhe h. Egal auf welchem Weg man von einem Punkt auf Höhe Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle h_1} zu einem Punkt auf Höhe Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle h_2} gelangt, ist dabei immer dieselbe Arbeit Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \Delta W = mg(h_2-h_1)} aufzubringen. Die potentielle Energie bezieht sich dabei allerdings immer noch auf eine Probemasse m (oder Probeladung q im Fall des elektrischen Feldes), während das von der Probe unabhängige Skalarfeld Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \Phi_G = W_\mathrm{pot}/m = g \cdot h} (bzw. Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \Phi_C = W_\mathrm{pot}/q = E\cdot s} im Fall des elektrischen Feldes) das physikalische Potential an der betreffenden Stelle genannt wird und als solches eine äquivalente Darstellung des zugrundeliegenden Vektorfelds ist.
Das Gegenteil konservativer Kräfte sind nicht-konservative Kräfte, also solche, die längs eines in sich geschlossenen Weges Arbeit verrichten, und zwar umso mehr, je länger der dabei zurückgelegte Weg ist. Beispiele derartiger nicht-konservativer Kräfte sind zum einen Kräfte in nicht-konservativen Kraftfeldern wie etwa (magnetischen) Wirbelfeldern, zum anderen dissipative Kräfte (von lateinisch dissipare = zerstreuen), z. B. Reibungskräfte.
Die meisten physikalischen Systeme sind, da ihnen stets Energie durch Reibung und/oder nicht-konservative Kraftfelder (z. B. Wirbelfelder) verloren geht, nicht-konservativ. Erweitert man dagegen die Perspektive, indem man z. B. bei Betrachtung der Energieverluste durch Reibung auch die Energieinhalte angekoppelter Wärmereservoirs mit berücksichtigt, so bleibt die Energie am Ende doch immer in irgendeiner Form erhalten.
Konservative Kraftfelder
Konservative Kraftfelder sind dem zuvor Gesagten folgend solche, in denen ein Probekörper beim Durchlaufen eines in sich geschlossenen Weges weder Energie gewinnt noch verliert.
Es lässt sich zeigen, dass die nachstehenden vier Charakteristika eines konservativen Kraftfelds Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \vec F(\vec r)} einander äquivalent sind:
- 1. Die Arbeit entlang jeder beliebigen geschlossenen Kurve Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle C} innerhalb des Feldes ist gleich Null, also .
- 2. Die Arbeit Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle W=\int_S \vec F(\vec r) \cdot \mathrm d \vec r} entlang eines beliebigen Weges Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle S} durch das Kraftfeld ist nur vom Anfangs- und Endpunkt des Weges, nicht aber von seinem Verlauf abhängig.
- 3. Es existiert ein skalares Feld Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \Phi(\vec r)} , welches das zugehörige Potential des Kraftfelds genannt wird, so dass sich die Kraft Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \vec F(\vec r)} auch in der Form Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \vec F(\vec r)=-Q\vec \nabla \Phi(\vec r)} beschreiben lässt, d. h. als Gradientenfeld, mit Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \vec \nabla} als dem Nabla-Operator, als dem Gradienten des Potentials und der Ladung oder Kopplungsstärke Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle Q} , die im Fall des elektrischen Felds die elektrische Ladung q des Probekörpers, im Fall des Gravitationsfelds seine Masse m ist.
- 4. Das Feld ist auf einem einfach zusammenhängenden Gebiet definiert und erfüllt dort die Integrabilitätsbedingung Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \textstyle \frac{\partial F_k}{\partial x_i} = \frac{\partial F_i}{\partial x_k}} . Dies bedeutet, dass die Rotation verschwindet, also bzw. Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \operatorname{rot}\, \vec F(\vec r) = \vec 0\, } ist.
Analog zum eben Gesagten werden in der Mathematik ganz allgemein Vektorfelder, die sich als Gradienten skalarer Felder beschreiben lassen, als konservativ bezeichnet, zusammengesetzt aus Potentialvektoren, denen auf Seiten der skalaren Ausgangsfelder die zugehörigen Potentiale gegenüberstehen[2].
Potentiale und Potentialfelder
Der Begriff des Potentials wird in der Physik und Mathematik zum Teil unterschiedlich gebraucht.
So bezeichnet das Potential in der Mathematik ganz allgemein eine Klasse skalarer Ortsfunktionen bzw. Skalarfelder mit bestimmten mathematischen Eigenschaften, während es in der Physik nur den Quotienten der potentiellen Energie Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle W_\mathrm{pot}} eines Körpers an der Stelle Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \vec r} und seiner elektrischen Ladung q bzw. Masse m definiert:
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \Phi_C (\vec r)= \frac {W_\mathrm{pot}(\vec r)}q \quad \text{bzw.} \quad \Phi_G (\vec r)= \frac {W_\mathrm{pot}(\vec r)}m}
Ein Potential im physikalischen Sinn Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \Phi(\vec r)} ist dabei stets auch eines im mathematischen Sinn, jedoch nicht umgekehrt: So sind sowohl das Gravitations- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \Phi_G} und Coulomb-Potential Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \Phi_C} wie auch die potentielle Energie in einem konservativen Kraftfeld ihrer mathematischen Natur nach Potentiale, im physikalischen Sinn jedoch nur die beiden erstgenannten.
Ähnlich verhält es sich mit der Terminologie bei den Gradienten von Potentialen, also den aus den jeweiligen Skalarfeldern Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \Phi(\vec r)} abgeleiteten Vektorfeldern also Beschleunigungsfeldern Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \vec g(\vec r)= \vec\nabla \Phi_G} bzw Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \vec E(\vec r) = \vec\nabla \Phi_C} : Dennoch werden häufig auch die Kraftfelder Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \vec F(\vec r)= m\vec\nabla \Phi_G} bzw Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \vec F(\vec r) = q\vec\nabla \Phi_C} als „Potentialfelder“ bezeichnet[2].
Beispiel
Der Gradient der potentiellen Energie Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle W_\mathrm{pot}\ } an der Stelle Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \vec r} liefert die an dieser Stelle wirkende und dem Prinzip des kleinsten Zwanges folgend stets in Richtung abnehmender potentieller Energie zeigende „rücktreibende“ Kraft Fehler beim Parsen (Konvertierungsfehler. Der Server („https://wikimedia.org/api/rest_“) hat berichtet: „Cannot get mml. Server problem.“): {\displaystyle -{\vec {F}}({\vec {r}})} :
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \vec F(\vec r) = -\vec \nabla W_\mathrm{pot}(\vec r)}
In der Nähe der Erdoberfläche ist die potentielle Energie Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle W_\mathrm{pot}} einer Masse Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle m} in Höhe Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle h} über dem Boden unter Annahme einer für kleinen Höhenänderungen annähernd konstanten Erdbeschleunigung Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle g} gleich Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle mgh} . Ersetzt man, da es sich beim Gravitationsfeld der Erde um ein zumindest lokal radiales Feld handelt, den Ortsvektor Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \vec r} durch die Höhe und den Gradienten durch die Ableitung nach Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle h} , ergibt sich damit für die Schwerkraft die Formel:
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle F(h)=-\frac{\mathrm{d}}{\mathrm{d}h} W_\mathrm{pot}(h)=-\frac{\mathrm{d}}{\mathrm{d}h} (mgh)=-mg}
Wie dem Vorzeichen des Resultats anzusehen, ist die Kraft Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle F(h)} der Richtung zunehmender Höhe entgegengesetzt.
Lokale Konservativität
Beim letzten der obengenannten vier Charakteristika konservativer Kraftfelder ist insbesondere auf das Kriterium des „einfach zusammenhängenden Gebiets“, also darauf zu achten, dass das Gebiet, anschaulich gesprochen, keine „Löcher“ oder ähnliche Definitionslücken enthält. Nicht „einfach zusammenhängend“ in diesem Sinn ist beispielsweise das Gebiet um einen stromdurchflossenen Leiter, dessen Magnetfeld zwar außerhalb des Leiters wie nachstehend definiert ist, für die z-Achse (0|0|z) selbst jedoch weder Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \vec B} noch seine Ableitung existieren:
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \vec B(x,y,z) = \frac{\mu_0\,I}{2\pi} \, \frac{1}{x^2+y^2}\begin{pmatrix}-y \\ x \\ 0 \end{pmatrix} }
So gilt zwar außerhalb des Leiters Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \operatorname{rot}\, \vec B =0\ } . Dennoch verschwindet ein Ringintegral um die z-Achse nicht. Integriert man zum Beispiel entlang des Einheitskreises, der durch
- mit Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \quad 0 \leq \varphi < 2\pi }
parametrisiert wird, so erhält man als Wegintegral
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \begin{align} \int_C \vec B \, \mathrm d\vec {r} & = \int \vec B(\vec r(\varphi)) \cdot\frac{\partial \vec r(\varphi)}{\partial \varphi} \mathrm d\varphi\\ & = \frac{\mu_0\,I}{2\pi} \int_0^{2\pi} \begin{pmatrix}-\sin(\varphi) \\ \cos(\varphi) \end{pmatrix}\cdot \begin{pmatrix}-\sin(\varphi) \\ \cos(\varphi) \quad\end{pmatrix} d\varphi\\ & = \mu_0\,I \neq 0\ \end{align}}
Obwohl die Rotation Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \operatorname{rot}\, \vec B} mit Ausnahme der Definitionslücke an der z-Achse überall verschwindet, ist das B-Feld dadurch nicht durchgehend konservativ. Da die Energie dennoch auf allen Pfaden erhalten bleibt, die die z-Achse nicht umschließen, spricht man hier einschränkend von lokaler Konservativität.
Beweis der Äquivalenz der Kriterien
Wie anfangs bereits festgestellt, sind die vier Definitionen für ein konservatives Kraftfeld miteinander gleichbedeutend. Das erste Kriterium ist gerade die Definition einer konservativen Kraft aus der Einleitung, die anderen folgen daraus.
1. Davon ausgehend, dass die Arbeit entlang eines geschlossenen Pfades verschwindet, kann zunächst die Korrektheit des zweiten Kriteriums gezeigt werden. Man betrachte dazu zwei Wege Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle S_1} und Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle S_2} zwischen den Punkten 1 und 2 in einem konservativen Kraftfeld wie im Bild rechts:
Verläuft Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle C} von Punkt 1 über Weg zum Punkt 2, dann über den Weg Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle S_2} zurück zum Punkt 1, so ergibt sich das Ringintegral über diesen Weg damit zu
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle 0=\oint_C \vec F (\vec r) \cdot \mathrm d \vec r=\int_{1, S_1}^{2} \vec F (\vec r) \cdot \mathrm d \vec r +\int_{2, -S_2}^{1} \vec F (\vec r) \cdot \mathrm d \vec r}
Mit
- Fehler beim Parsen (Konvertierungsfehler. Der Server („https://wikimedia.org/api/rest_“) hat berichtet: „Cannot get mml. Server problem.“): {\displaystyle \int _{1,S_{1}}^{2}{\vec {F}}({\vec {r}})\cdot \mathrm {d} {\vec {r}}=-\int _{2,-S_{2}}^{1}{\vec {F}}({\vec {r}})\cdot \mathrm {d} {\vec {r}}=\int _{1,S_{2}}^{2}{\vec {F}}({\vec {r}})\cdot \mathrm {d} {\vec {r}}}
ist das dann und genau dann null, wenn
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \int_{1, S_1}^{2} \vec F (\vec r) \cdot \mathrm d \vec r = \int_{1, S_2}^{2} \vec F (\vec r) \cdot\mathrm d \vec r}
was gerade der Wegunabhängigkeit und damit der zweiten Definition für ein konservatives Kraftfeld entspricht.
2. Wenn Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \vec F(\vec r)=-\vec \nabla V( \vec r)} , so ist
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \int_{1}^{2} \vec F (\vec r) \cdot \mathrm d \vec r = - \int_{1}^{2} \vec \nabla V( \vec r) \cdot\mathrm d \vec r = V(1) - V(2)} , unabhängig vom Weg S.
3. Wenn Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \vec F(\vec r)=-\vec \nabla V( \vec r)} , so gilt für die Rotation
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \vec \nabla \times \vec F(\vec r) = - \vec \nabla \times \vec \nabla V(\vec r)=\begin{pmatrix} \frac{\partial}{\partial x} \\ \frac{\partial}{\partial y} \\ \frac{\partial}{\partial z}\end{pmatrix} \times \begin{pmatrix} \frac{\partial V}{\partial x} \\ \frac{\partial V}{\partial y} \\ \frac{\partial V}{\partial z}\end{pmatrix} =\begin{pmatrix} \frac{\partial^2 V}{\partial y \partial z} - \frac{\partial^2 V}{\partial z \partial y} \\ \frac{\partial^2 V}{\partial z \partial x} - \frac{\partial^2 V}{\partial x \partial z} \\ \frac{\partial^2 V}{\partial x \partial y} - \frac{\partial^2 V}{\partial y \partial x} \end{pmatrix} = \vec 0} ,
wobei der letzte Schritt wegen der Vertauschbarkeit der partiellen Ableitungen gemäß dem Satz von Schwarz zustande kam.
4. Nach dem Satz von Stokes gilt für eine Fläche A, die von einer geschlossenen Kurve C umschlossen wird
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \iint_A \vec \nabla \times \vec F \cdot\mathrm d \vec A = \oint_C \vec F \mathrm \cdot \mathrm d \vec r} .
Dieses Integral verschwindet für alle Kurven C dann und genau dann, wenn Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \vec \nabla \times \vec F (\vec r)= \vec 0\ } ist.
Energieerhaltung
In der klassischen Mechanik gilt für die kinetische Energie
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle T= \frac{1}{2}m {\vec v}^2} ,
wobei Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \vec v} die Geschwindigkeit ist.
Mit dem zweiten Newtonschen Axiom
für konstante Massen Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle m} kann die Energie geschrieben werden.
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle E = \int_{t_1}^{t_2} \vec F( t ) \cdot \vec v(t) \,\mathrm dt=\int_{t_1}^{t_2} m \dot{ \vec v}(t) \cdot \vec v(t) \,\mathrm dt} .
Dann gilt für den Weg von Punkt 1 zum Punkt 2 das Wegintegral
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \int_{1,S1}^{2} \vec F \cdot \mathrm d \vec r = m \int_{t_1}^{t_2} \dot{\vec v}(t) \cdot \vec v(t) \,\mathrm d t} .
Für die rechte Seite dieser Gleichung gilt
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \int_{t_1}^{t_2} \frac{\mathrm d}{\mathrm d t} \frac{1}{2}m \vec v^2(t) \mathrm d t = \frac{1}{2}m \vec v^2(t_2) - \frac{1}{2}m \vec v^2(t_1) = T(t_2) - T(t_1)= T_2 - T_1} .
Das bedeutet, dass die gesamte Arbeit, die bei der Bewegung aufgebracht wird, der Änderung der kinetischen Energie entspricht. Für die linke Seite gilt hingegen unter Verwendung der Eigenschaften konservativer Kräfte
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \int_{1,S1}^{2} \vec F \cdot \mathrm d \vec r = - \int_{1,S1}^{2} \nabla V \cdot \mathrm d \vec r = - V(r_2) + V(r_1) = - V_2 + V_1}
und damit
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle T_2 - T_1 = - V_2 + V_1\ }
bzw.
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle T_1 + V_1 = T_2 + V_2\ }
was gerade dem Energieerhaltungssatz entspricht. Die Eigenschaft der Energieerhaltung ist auch der Grund, weshalb konservative Kraftfelder ihren Namen erhielten – die Energie ist konserviert.
Einzelnachweise
- ↑ David Halliday, Robert Resnick, Jearl Walker: Physik. = Halliday Physik. Bachelor-Edition. Wiley-VCH, Weinheim 2007, ISBN 978-3-527-40746-0, S. 143–145.
- ↑ a b Walter Gellert, H. Küstner, M. Hellwich, Herbert Kästner (Hrsg.): Kleine Enzyklopädie Mathematik. Verlag Enzyklopädie, Leipzig 1970, S. 547.