Max-stabile Prozesse

aus Wikipedia, der freien Enzyklopädie

Max-stabile Prozesse erweitern die mehrdimensionale Extremwerttheorie hin zum unendlichdimensionalen Fall. Ähnlich zum ein- und mehrdimensionalen Fall, tritt ein solcher Prozess als Grenzwert der Maxima von angemessen normalisierten unabhängigen Kopien eines stochastischen Prozesses auf.

Definition

Sei eine beliebige Indexmenge. Ein stochastischer Prozess heißt max-stabil, falls es Normalisierungskonstanten gibt, sodass für unabhängige Kopien des Prozesses gilt[1]

.

Die eindimensionalen Randverteilungen eines max-stabilen Prozesses sind durch eine der drei univariaten Extremwertverteilungen gegeben. Im Falle von Fréchet-verteilten Rändern d. h. können die Normalisierungskonstanten wie folgt gewählt werden: .

Allgemeines

Seien unabhängige Kopien des stochastischen Prozesses . Gibt es nun Normalisierungskonstanten , sodass gilt für und und der Prozess ist nicht degeneriert, so ist ein max-stabiler Prozess. Ein max-stabiler Prozess mit einfachen Fréchet-verteilten Rändern kann mithilfe seiner Spektraldarstellung konstruiert werden.[2]

Einzelnachweise

  1. Maximilian Zott: Extreme Value Theory in Higher Dimensions - Max-Stable Processes and Multivariate Records. (uni-wuerzburg.de [abgerufen am 7. Oktober 2019]).
  2. Laurens de Haan: A Spectral Representation for Max-stable Processes. In: The Annals of Probability. 1984.