Mehrfachschießverfahren

aus Wikipedia, der freien Enzyklopädie

Das Mehrfachschießverfahren (englisch multiple shooting method), auch Mehrzielmethode, ist in der Mathematik ein numerisches Verfahren zur Lösung von Randwertproblemen bei gewöhnlichen Differentialgleichungen. Dabei wird das Intervall, auf dem die Lösung des Randwertproblems bestimmt werden soll, zunächst in kleinere Teilintervalle unterteilt, auf denen dann jeweils ein Anfangswertproblem gelöst wird. Mit zusätzlichen Stetigkeitsbedingungen wird dann eine Lösung auf dem ganzen Intervall bestimmt. Diese Methode ist eine wesentliche Weiterentwicklung des Einfachschießverfahrens, insbesondere was die numerische Stabilität anbelangt.

Problemstellung

Gegeben sei ein Randwertproblem der Form

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle y'(t) = f(t, y(t)), \quad t \in [a,b], \quad g(y(a),y(b)) = 0} ,

wobei die rechte Seite Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle f \colon [a,b] \times \R^n \to \R^n} und die Zweipunkt-Randbedingung Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle g \colon \R^n \times \R^n \to \R^n} vorgegebene stetige Funktionen sind und eine differenzierbare Funktion Fehler beim Parsen (Konvertierungsfehler. Der Server („https://wikimedia.org/api/rest_“) hat berichtet: „Cannot get mml. Server problem.“): {\displaystyle y\colon [a,b]\to \mathbb {R} ^{n}} gesucht wird. Zur Lösung eines solchen Randwertproblems geht das Einfachschießverfahren folgendermaßen vor: Sei Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle y_p(t)} die Lösung des Anfangswertproblems

,

dann wird der freie Parameter Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle p \in \R^n} so bestimmt, dass die Randbedingung

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle g(p, y_p(b)) = 0}

erfüllt ist. Zur Lösung dieser Vektorgleichung wird meist ein iteratives Verfahren, wie das Newton-Verfahren, verwendet. Bei steifen Anfangswertproblemen können jedoch kleine Änderungen in der Anfangsbedingung zu großen Änderungen in der Lösung Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle y_p(b)} führen, wodurch das Verfahren numerisch instabil wird.

Verfahren

Das Mehrfachschießverfahren verwendet nun zur Verbesserung der Stabilität eine Unterteilung

Fehler beim Parsen (Konvertierungsfehler. Der Server („https://wikimedia.org/api/rest_“) hat berichtet: „Cannot get mml. Server problem.“): {\displaystyle a=t_{1}<t_{2}<\cdots <t_{N+1}=b} .

des Intervalls Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle [a,b]} in Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle N} Teilintervalle und berechnet die Lösungen Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle y_{k,p_k}(t), k=1, \ldots, N,} einer Reihe von Anfangswertproblemen

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \begin{align} y'(t) & = f(t, y(t)), \quad t \in [t_1,t_2], \quad y(t_1) = p_1 \\ y'(t) & = f(t, y(t)), \quad t \in [t_2,t_3], \quad y(t_2) = p_2 \\ & \,\,\,\vdots \\ y'(t) & = f(t, y(t)), \quad t \in [t_N,t_{N+1}], \quad y(t_N) = p_N \end{align} }

in diesen Teilintervallen. Dabei werden die freien Parameter Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle p_1, \ldots, p_N \in \R^n} so bestimmt, dass die Stetigkeitsbedingungen

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle y_{k,p_k}(t_{k+1}) = p_{k+1} ~\text{für}~ k=1, \ldots , N-1}

und die Randbedingung

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle g(p_1,y_{N,p_N}(t_{N+1}))=0}

erfüllt sind. Damit ist die zusammengesetzte Funktion Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle y \colon [a,b] \to \R^n} definiert durch

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle y(t) = y_{k,p_k}(t) ~\text{für}~ t \in [t_k, t_{k+1}]}

nicht nur stetig, sondern auch differenzierbar, und somit eine Lösung des Ausgangsproblems. Zur Bestimmung der Parameter Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle p_k} ist ein nichtlineares vektorielles Gleichungssystem mit Gleichungen und Unbekannten zu lösen, was wiederum mit einem iterativen Verfahren erfolgt.

Literatur

  • Josef Stoer, Roland Bulirsch: Numerische Mathematik 2. 5. Auflage. Springer-Verlag, 2005, ISBN 3-540-23777-1, Kapitel 7.3.5 ff.
  • Hans Georg Bock, Karl J. Plitt: A multiple shooting algorithm for direct solution of optimal control problems. In: Proceedings of the 9th IFAC World Congress. Budapest 1984.
  • Morrison, David D. and Riley, James D. and Zancanaro, John F.: Multiple shooting method for two-point boundary value problems. In: Commun. ACM. Band 5, Nr. 12. ACM, New York, NY, USA Dezember 1962, S. 613–614.