Mittlere Krümmung

aus Wikipedia, der freien Enzyklopädie

Die mittlere Krümmung ist neben der gaußschen Krümmung ein wichtiger Krümmungsbegriff in der Theorie der Flächen im dreidimensionalen euklidischen Raum , einem Gebiet der Differentialgeometrie.

Definition

Gegeben seien eine reguläre Fläche im und ein Punkt dieser Fläche. Die mittlere Krümmung der Fläche in diesem Punkt ist das arithmetische Mittel der beiden Hauptkrümmungen und . Das heißt, die mittlere Krümmung ist definiert als

Von besonderem Interesse sind sogenannte Minimalflächen, für welche bzw. gilt.

Allgemeiner kann man die mittlere Krümmung für n-dimensionale Hyperflächen des durch definieren. Dabei ist die Weingarten-Abbildung und bezeichnet die Spur einer Matrix.

Berechnung

  • Sind , , bzw. , , die Koeffizienten der ersten bzw. zweiten Fundamentalform der Fläche, so gilt die Formel
Wenn die Fläche isotherm parametrisiert ist, das heißt, wenn für die Koeffizienten der ersten Fundamentalform und gilt, dann vereinfacht sich diese Formel zu
  • Ist die betrachtete Fläche der Graph einer Funktion über dem Parameterbereich , also für alle , so gilt für die mittlere Krümmung:
.
Hierbei bezeichnen und die ersten und , und die zweiten partiellen Ableitungen von Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle f} .

Beispiele

  • Die Oberfläche einer Kugel mit Radius Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle r} hat die mittlere Krümmung Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle H = \tfrac 1 r} .
  • In einem beliebigen Punkt auf der gekrümmten Fläche eines geraden Kreiszylinders mit Radius Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle r} ist die mittlere Krümmung gleich Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle H = \tfrac 1 {2r}}

Weitere Eigenschaften

  • Für eine Fläche Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle X = X(u,v)} gilt die Gleichung
Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle H\vec{n} = g^{ij}\nabla_i\nabla_j X,}
mit der Einheitsnormale Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \vec{n}} , Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle g_{ij} } als erster Fundamentalform und Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \nabla_i} der kovarianten Ableitung.
  • Wenn eine Fläche Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle X = X(u,v)} isotherm parametrisiert ist, so genügt sie dem Rellichschen H-Flächensystem
Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \Delta X = 2H X_u\times X_v.}
  • Ist die Fläche als Niveaufläche einer Funktion Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle F} gegeben, so gilt
Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle 2 H = -\operatorname{div} \vec{n} = -\operatorname{div} \frac{\nabla F}{|\nabla F|}.} [1]
Dabei ist Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \operatorname{div}} die Divergenz und Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \vec{n}} das Einheitsnormalenfeld Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \tfrac{\nabla F}{|\nabla F|}.} Diese Formel heißt Formel von Bonnet und gilt allgemein für n-dimensionale Hyperflächen.

Literatur

  • Wolfgang Kühnel: Differentialgeometrie. Kurven – Flächen – Mannigfaltigkeiten. 4. überarbeitete Auflage. Vieweg, Wiesbaden 2007, ISBN 978-3-8348-0411-2.

Einzelnachweise

  1. Philipp D. Lösel: GPU-basierte Verfahren zur Segmentierung biomedizinischer Bilddaten. (PDF) Heidelberg University, 22. April 2022, S. 42–43, abgerufen am 5. September 2022. Beweis zu Satz 3.22.