Multinomialtheorem
In der Mathematik stellt das Multinomialtheorem (auch Multinomialformel oder Multinomialsatz) oder Polynomialtheorem eine Verallgemeinerung der binomischen Formel auf die Summe beliebig vieler Koeffizienten dar, indem es die Binomialkoeffizienten als Multinomialkoeffizienten verallgemeinert.
Formel
Der Multinomialkoeffizient ist für nichtnegative ganze Zahlen Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle k_1,\ldots, k_n} und Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle k :=\!\, k_1+\ldots+k_n} definiert als
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle {k\choose k_1,\,\ldots,\,k_n} := \frac{k!}{k_1!\cdot\,\ldots\,\cdot k_n!}.}
Der Multinomialsatz lautet dann
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle (x_1+x_2+\ldots+x_n)^k\,=\sum_{k_1+\ldots+k_n=k}{k\choose k_1,\ldots,k_n}\,\cdot\, x_1^{k_1}\cdot x_2^{k_2}\cdots x_n^{k_n}.}
Eine kürzere Formulierung erlaubt die Multiindexnotation mit Multiindex Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \alpha} :
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle (x_1 + x_2 + \cdots + x_n)^k = \sum_{|\alpha|=k} {{k} \choose \alpha}\cdot x^\alpha.}
Dabei identifiziert man Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle x} mit dem Vektor Fehler beim Parsen (Konvertierungsfehler. Der Server („https://wikimedia.org/api/rest_“) hat berichtet: „Cannot get mml. Server problem.“): {\displaystyle (x_{1},\ldots ,x_{n})\in \mathbb {R} ^{n}} .
Anwendung
Als Korollar aus dem Multinomialtheorem gewinnt man beispielsweise für Multiindizes die Abschätzung
- für alle mit ,
also
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle |\alpha|! \le n^{|\alpha|}\cdot\alpha!} .
Beweisskizze
Das Multinomialtheorem lässt sich wahlweise mit Hilfe einer mehrdimensionalen Taylorentwicklung erster Ordnung oder durch vollständige Induktion über Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle n} unter Zuhilfenahme des binomischen Lehrsatzes beweisen.
Siehe auch
Literatur
- S.A. Rukova: Multinomial coefficient. In: Michiel Hazewinkel (Hrsg.): Encyclopedia of Mathematics. Springer-Verlag und EMS Press, Berlin 2002, ISBN 978-1-55608-010-4 (englisch, online).
- Jaroslav Nesetril, Jiri Matousek: Diskrete Mathematik: Eine Entdeckungsreise. Springer 2007, ISBN 978-3-540-30150-9, S. 79 (Auszug in der Google-Buchsuche)
- Dominique Foata, Aimé Fuchs: Wahrscheinlichkeitsrechnung. Birkhäuser 1999, ISBN 3-7643-6169-7, S. 41–42 (Auszug in der Google-Buchsuche)
Weblinks
- Eric W. Weisstein: Multinomial Coefficient. In: MathWorld (englisch).