Tupel
Tupel (abgeleitet von mittellateinisch quintuplus ‚fünffach‘, septuplus ‚siebenfach‘, centuplus ‚hundertfach‘ etc.) sind in der Mathematik neben Mengen eine wichtige Art und Weise, mathematische Objekte zusammenzufassen. Ein Tupel ist eine Liste endlich vieler, nicht notwendigerweise unterschiedlicher Objekte. Dabei spielt, im Gegensatz zu Mengen, die Reihenfolge der Objekte eine Rolle. Es gibt verschiedene Möglichkeiten, Tupel formal als Mengen darzustellen. Tupel finden in vielen Bereichen der Mathematik Verwendung, zum Beispiel als Koordinaten von Punkten oder als Vektoren in endlichdimensionalen Vektorräumen.
Von Tupeln unabhängig von ihrer Länge ist selten die Rede. Vielmehr verwendet man das Wort Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle n} -Tupel und die im nächsten Abschnitt genannten Spezialfälle davon dann, wenn sich aus dem Zusammenhang die Länge als feste Zahl oder als benannte Konstante wie Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle n} ergibt. Betrachtet man dagegen viele endliche Folgen unterschiedlicher Längen von Elementen einer Grundmenge, spricht man von endlichen Folgen oder definiert einen neuen Begriff, der oft mit „Kette“ zusammengesetzt ist, z. B. Zeichenkette, Additionskette.
In der Informatik wird der Begriff Tupel auch als Synonym für einen Datensatz verwendet. In diversen Programmiersprachen wie zum Beispiel Python, sind Tupel unveränderliche Datensätze.
Notation
Ein Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle n} -Tupel ist eine Zusammenfassung von mathematischen Objekten Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle x_1, \ldots, x_n} in einer Liste. Im Gegensatz zu Mengen müssen die Objekte dabei nicht notwendigerweise voneinander verschieden sein und ihre Reihenfolge ist von Bedeutung. Tupel werden meist mittels runder Klammern
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle (x_1, \ldots, x_n)}
notiert, wobei zwei aufeinanderfolgende Objekte durch ein Komma getrennt werden. Das an der -ten Stelle stehende Objekt heißt dabei die Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle i} -te Komponente des Tupels. Gelegentlich werden zur Notation aber auch andere Klammertypen, wie spitze oder eckige Klammern verwendet:
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \langle x_1, \ldots, x_n \rangle} oder Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle [x_1, \ldots, x_n]}
Auch andere Trennzeichen, wie Semikolon oder senkrechter Strich sind üblich. Weitere Notationsvarianten sind
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle (x_i)_{i=1, \ldots , n}, (x_i)_{i \in \{1, \ldots, n\}}, (x_i)_{i=1}^n}
oder auch kurz , wenn die Länge des Tupels aus dem Kontext klar ist.
Besondere Bezeichnungen für n-Tupel mit kleinem n
- Das 0-Tupel heißt leeres Tupel und wird durch Fehler beim Parsen (Konvertierungsfehler. Der Server („https://wikimedia.org/api/rest_“) hat berichtet: „Cannot get mml. Server problem.“): {\displaystyle ()} notiert.
- Ein 2-Tupel wird auch geordnetes Paar oder Dupel genannt,
- ein 3-Tupel auch Tripel,
- ein 4-Tupel auch Quadrupel,
- ein 5-Tupel auch Quintupel,
- ein 6-Tupel auch Sextupel.
- Die Reihe wird analog durch lateinische Vervielfältigungszahlwörter fortgesetzt.
Beispiele
Tupel gleichartiger Objekte:
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle (a)} und sind zwei 1-Tupel von Elementen Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle a, b} einer Menge Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle A} .
- , und sind drei verschiedene 2-Tupel ganzer Zahlen.
- ist ein 3-Tupel aus Mengen.
- ist ein 4-Tupel trigonometrischer Funktionen.
Tupel verschiedenartiger Objekte:
- Ein gerichteter Graph ist ein Paar bestehend aus einer Menge von Knoten und einer Menge gerichteter Kanten Fehler beim Parsen (Konvertierungsfehler. Der Server („https://wikimedia.org/api/rest_“) hat berichtet: „Cannot get mml. Server problem.“): {\displaystyle E\subseteq V\times V} .
- Ein Körper ist ein Tripel Fehler beim Parsen (Konvertierungsfehler. Der Server („https://wikimedia.org/api/rest_“) hat berichtet: „Cannot get mml. Server problem.“): {\displaystyle (K,+,\,\cdot )} bestehend aus einer Menge und zwei zweistelligen Verknüpfungen und , die bestimmte Eigenschaften besitzen.
- Ein Wahrscheinlichkeitsraum ist ein Tripel bestehend aus einer Ergebnismenge , einer σ-Algebra Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \Sigma} und einem Wahrscheinlichkeitsmaß Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle P} .
Gleichheit von Tupeln
Zwei Tupel Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle (x_1, \ldots, x_n)} und Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle (y_1, \ldots, y_m)} sind genau dann gleich, wenn sie gleich lang sind und ihre entsprechenden Komponenten gleich sind, das heißt[1]
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle (x_1, \ldots, x_n) = (y_1, \ldots, y_m) ~\Longleftrightarrow~ n = m} und Fehler beim Parsen (Konvertierungsfehler. Der Server („https://wikimedia.org/api/rest_“) hat berichtet: „Cannot get mml. Server problem.“): {\displaystyle x_{i}=y_{i}} für .
Darstellung als Menge
Tupel können auch als Mengen dargestellt werden. Eine einfache Darstellung von Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle n} -Tupeln lautet:[1]
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle n=0\colon\; () := \emptyset}
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle n>0\colon\; (x_1, \ldots, x_n) := \{(x_1, \ldots, x_{n-1}), \{x_n\}\}}
Mit dieser Darstellung ist das geordnete Paar Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle (x, y)} die Menge Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \{\{\emptyset, \{x\}\}, \{y\}\}} .
Einer anderen Darstellung liegt die Vorstellung zugrunde, dass Tupel endliche Folgen bzw. Familien sind, das heißt Funktionen mit einem eventuell leeren Abschnitt der Menge der positiven natürlichen Zahlen als Indexbereich[1] (geordnete Paare hier in eckigen Klammern):
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle n=0\colon\; () := \emptyset}
Nichtleere Tupel können auch rekursiv auf Basis geordneter Paare dargestellt werden[2][3] (geordnete Paare auch hier in eckigen Klammern):
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle n>1\colon\; (x_1, \ldots, x_n) := [(x_1, \ldots, x_{n-1}), x_n]}
Allerdings gilt für auf letztgenannte Weise dargestellte Tupel lediglich eine schwächere Form des Gleichheitsaxioms: Zwei gleich lange Tupel sind dann und nur dann gleich, wenn ihre entsprechenden Komponenten gleich sind.
Unabhängig davon, wie Tupel als Mengen dargestellt werden, verhalten sich 2-Tupel genauso wie geordnete Paare und können wie diese verwendet werden, auch wenn sich, wie bei der Tupel-Darstellung als endlicher Folge, 2-Tupel- und Paar-Darstellungen unterscheiden.
Die letzte der drei obigen Definitionen hat den Vorteil, dass sie auch für echte Klassen definiert ist, sofern das geordnete Paar Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle [a, b]} für echte Klassen definiert ist. Das heißt, man kann z. B. das Monoid der Ordinalzahlen mit Addition und neutralem Element Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle 0} als Tupel Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle (\Omega, +, 0)} definieren, obwohl es sich bei den Ordinalzahlen um keine Menge, sondern um eine echte Klasse handelt.
Verwendung
Tupel werden in der Mathematik zum Beispiel als Koordinaten von Punkten oder Vektoren in Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle n} -dimensionalen Räumen und in der Informatik als Datenfelder und -strukturen verwendet. Folglich werden auch Zeilen oder Spalten von Matrizen ggf. als Tupel angesehen und behandelt.
Siehe auch
Literatur
- Heinz-Dieter Ebbinghaus: Einführung in die Mengenlehre. 4. Auflage. Spektrum Akademischer Verlag, Heidelberg u. a. 2003, ISBN 3-8274-1411-3 (HochschulTaschenbuch).
- Roger Godement: Algebra. Hermann, Paris 1968.
Weblinks
- V.N. Grishin: Tuple. In: Michiel Hazewinkel (Hrsg.): Encyclopedia of Mathematics. Springer-Verlag und EMS Press, Berlin 2002, ISBN 978-1-55608-010-4 (englisch, online).
- Raymond Puzio u. a.: Ordered tuplet. In: PlanetMath. (englisch)
- Eric W. Weisstein: n-Tuple. In: MathWorld (englisch).
Einzelnachweise
- ↑ a b c V. N. Grishin: Tuple. In: Michiel Hazewinkel (Hrsg.): Encyclopedia of Mathematics. Springer-Verlag und EMS Press, Berlin 2002, ISBN 978-1-55608-010-4 (englisch, online [abgerufen am 24. September 2010]).
- ↑ Nicolas Bourbaki: Eléments de mathématique. Première partie: Les strurures fondamentales de l’analyse. Livre I. Théorie des ensembles. Springer, Berlin 2006, ISBN 3-540-34034-3 (französisch).
- ↑ Arnold Oberschelp: Allgemeine Mengenlehre. BI-Wiss.-Verl., Mannheim/Leipzig/Wien/Zürich 1994, ISBN 3-411-17271-1.