Perfekte Potenz
In der Mathematik ist eine perfekte Potenz (vom englischen perfect power) eine natürliche Zahl , die ein Produkt gleicher natürlicher Faktoren ist. Mit anderen Worten: Sie ist eine ganze Zahl, die als Quadrat oder eine höhere ganzzahlige Potenz einer anderen ganzen Zahl größer als 1 ausgedrückt werden kann.
Etwas mathematischer formuliert:
- ist eine perfekte Potenz, wenn mit existieren, sodass gilt. In diesem Fall nennt man eine perfekte -te Potenz.
Ist , so nennt man eine Quadratzahl. Ist , so nennt man eine Kubikzahl.
Man kann auch die Zahlen 0 und 1 als perfekte Potenzen betrachten, weil sowohl und für alle gilt.
Beispiele
- Die kleinsten perfekten Potenzen sind die folgenden:
- Dabei fällt auf, dass man gewisse perfekte Potenzen auf mehrere Arten darstellen kann, wie zum Beispiel oder .
- Eine Folge von perfekten Potenzen kann erzeugt werden, indem man alle möglichen Werte für und durchgeht. Die kleinsten perfekten Potenzen sind die folgenden (inklusive der doppelten wie zum Beispiel und ):
- Lässt man die doppelten weg, erhält man die folgenden kleinsten perfekten Potenzen:
- Ist man nur an den doppelten oder mehrfachen kleinsten perfekten Potenzen interessiert, so gibt die folgende Liste Auskunft:
- Die Anzahl der perfekten Potenzen ohne doppelte kleiner oder gleich gibt die folgende Liste an:
- 4, 13, 41, 125, 367, 1111, 3395, 10491, 32670, 102231, 320990, 1010196, 3184138, 10046921, 31723592, 100216745, 316694005, 1001003332, 3164437425, 10004650118, 31632790244, 100021566157, 316274216762, 1000100055684, … (Folge A070428 in OEIS)
- Beispiel:
- An der vierten Stelle obiger Liste steht die Zahl 125. Das bedeutet, dass es unter genau 125 perfekte Potenzen gibt. Dabei wird die 0 nicht mitgezählt, die 1 aber schon, die ebenfalls.
- Beispiel:
- 4, 13, 41, 125, 367, 1111, 3395, 10491, 32670, 102231, 320990, 1010196, 3184138, 10046921, 31723592, 100216745, 316694005, 1001003332, 3164437425, 10004650118, 31632790244, 100021566157, 316274216762, 1000100055684, … (Folge A070428 in OEIS)
- Die folgende Tabelle zeigt alle perfekten Potenzen mit und :
, | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
---|---|---|---|---|---|---|---|---|---|
2 | 4 | 8 | 16 | 32 | 64 | 128 | 256 | 512 | 1024 |
3 | 9 | 27 | 81 | 243 | 729 | 2187 | 6561 | 19683 | 59049 |
4 | 16 | 64 | 256 | 1024 | 4096 | 16384 | 65536 | 262144 | 1048576 |
5 | 25 | 125 | 625 | 3125 | 15625 | 78125 | 390625 | 1953125 | 9765625 |
6 | 36 | 216 | 1296 | 7776 | 46656 | 279936 | 1679616 | 10077696 | 60466176 |
7 | 49 | 343 | 2401 | 16807 | 117649 | 823543 | 5764801 | 40353607 | 282475249 |
8 | 64 | 512 | 4096 | 32768 | 262144 | 2097152 | 16777216 | 134217728 | 1073741824 |
9 | 81 | 729 | 6561 | 59049 | 531441 | 4782969 | 43046721 | 387420489 | 3486784401 |
10 | 100 | 1000 | 10000 | 100000 | 1000000 | 10000000 | 100000000 | 1000000000 | 10000000000 |
Eigenschaften
- Jede perfekte Potenz kann man auch als Primzahlpotenz (mit prim) darstellen.
- Beweis:
- Sei eine perfekte Potenz mit einer zusammengesetzten Zahl (wobei prim ist). Dann ist . Somit kann man jede perfekte Potenz auch als Primzahlpotenz mit darstellen.
- Beweis:
- Sei Fehler beim Parsen (Konvertierungsfehler. Der Server („https://wikimedia.org/api/rest_“) hat berichtet: „Cannot get mml. Server problem.“): {\displaystyle n=p_{1}^{\alpha _{1}}p_{2}^{\alpha _{2}}\ldots p_{r}^{\alpha _{r}}} die vollständige Primfaktorzerlegung von Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle n} mit verschiedenen Primzahlen Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle p_1, p_2, \ldots p_r} . Dann gilt:
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle n}
ist eine perfekte Potenz genau dann, wenn Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle {\operatorname{ggT}(\alpha_1, \alpha_1, \ldots \alpha_r)}>1}
ist, wobei mit Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle {\operatorname{ggT}}}
der größte gemeinsame Teiler gemeint ist.
- Beispiel:
- Sei Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle n=2^{36} \cdot 3^{48} \cdot 11^{240}} . Dann ist Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle {\operatorname{ggT}(36, 48, 240)}=12} . Die Zahl Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle n} ist daher eine 12-te Potenz (und somit auch eine 6. Potenz, eine 4. Potenz, eine Kubikzahl und eine Quadratzahl, weil 6, 4, 3 und 2 jeweils Teiler von 12 sind). Also ist Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle n} eine perfekte Potenz, nämlich Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle n=(2^3)^{12} \cdot (3^4)^{12} \cdot (11^{20})^{12}=(2^3 \cdot 3^4 \cdot 11^{20})^{12}} .
- Beispiel:
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle n}
ist eine perfekte Potenz genau dann, wenn Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle {\operatorname{ggT}(\alpha_1, \alpha_1, \ldots \alpha_r)}>1}
ist, wobei mit Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle {\operatorname{ggT}}}
der größte gemeinsame Teiler gemeint ist.
- Die unendliche Reihe der Kehrwerte der perfekten Potenzen (inklusive der mehrfachen wie zum Beispiel Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle 81 = 3^4 = 9^2} ) ergibt 1:
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \sum_{m=2}^{\infty} \sum_{k=2}^{\infty}\frac{1}{m^k}=1}
- Beweis:
- Zuerst betrachtet man die geometrische Reihe Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \sum_{k=0}^{\infty} q^k = \frac{1}{1-q}}
, die für Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle |q|<1}
konvergiert. Da tatsächlich Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle |\frac{1}{m}|<1}
ist für Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle m>1}
, gilt:
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \sum_{k=0}^{\infty} \frac{1}{m^k} = \sum_{k=0}^{\infty} \left(\frac{1}{m} \right)^k = \frac{1}{1-\frac{1}{m}}=\frac{1}{\frac{m-1}{m}}=\frac{m}{m-1}}
- Hebt man vorher aus der Summe noch Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \frac{1}{m^2}}
heraus und verwendet obige geometrische Reihe, erhält man:
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \sum_{m=2}^{\infty} \sum_{k=2}^{\infty}\frac{1}{m^k} =\sum_{m=2}^{\infty} \frac {1}{m^2} \sum_{k=0}^{\infty}\frac{1}{m^k} =\sum_{m=2}^{\infty} \frac {1}{m^2} \left( \frac{m}{m-1} \right) =\sum_{m=2}^{\infty} \frac {1}{m(m-1)} =\sum_{m=2}^{\infty} \left( \frac {1}{m-1} - \frac {1}{m} \right) = (\frac{1}{1}-\frac{1}{2})+(\frac{1}{2}-\frac{1}{3})+(\frac{1}{3}-\frac{1}{4})+\ldots = 1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\ldots = 1 \qquad \Box}
- Zuerst betrachtet man die geometrische Reihe Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \sum_{k=0}^{\infty} q^k = \frac{1}{1-q}}
, die für Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle |q|<1}
konvergiert. Da tatsächlich Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle |\frac{1}{m}|<1}
ist für Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle m>1}
, gilt:
- Beweis:
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \sum_{m=2}^{\infty} \sum_{k=2}^{\infty}\frac{1}{m^k}=1}
- Für die unendliche Reihe der Kehrwerte der perfekten Potenzen Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle n} ohne 0 und 1 und den doppelten gilt:[1]
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \sum_{n}\frac{1}{n}=\sum_{k=2}^{\infty}\mu(k)(1-\zeta(k)) \approx 0.874464368 \dots}
- Dabei ist Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \mu(k)} die Möbiusfunktion und Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \zeta(k)} die Riemannsche Zeta-Funktion. Die weiteren Nachkommazahlen kann man der Folge A072102 in OEIS entnehmen.
- Nach Leonhard Euler hat Christian Goldbach in einem mittlerweile verloren gegangenen Brief gezeigt, dass die unendliche Summe von Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \frac{1}{n-1}} , wobei Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle n} wieder die perfekten Potenzen ohne 0 und 1 und ohne die doppelten sind, gleich 1 ergibt (der sogenannte Satz von Goldbach–Euler):[2]
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \sum_{n}\frac{1}{n-1}= {\frac{1}{3} + \frac{1}{7} + \frac{1}{8}+ \frac{1}{15} + \frac{1}{24} + \frac{1}{26}+ \frac{1}{31}}+ \cdots = 1}
- Dieser Satz wurde erstmals von Leonhard Euler um 1740 unter dem Namen „Variæ observationes circa series infinitas“ publiziert, allerdings wurde er von ihm und Goldbach, wenn man moderne mathematische Maßstäbe anwendet, nicht ganz exakt, aber dafür intuitiv bewiesen.[3]
- Der rumänische Mathematiker Preda Mihăilescu hat im Jahr 2002 die Catalansche Vermutung bewiesen:[4]
- Die einzige ganzzahlige Lösung der Gleichung Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle x^p - y^q = 1} mit Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle x,p,y,q > 1} lautet Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle x=3} , Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle p=2} , Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle y=2} und Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle q=3} .
- Daraus ergibt sich die folgende Eigenschaft für perfekte Potenzen:
- Das einzige Paar aufeinanderfolgender perfekter Potenzen ist Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle 2^3=8} und Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle 3^2=9} .
Ungelöste Probleme
- Die Vermutung von Pillai besagt folgendes:[5]
- Für jede gegebene positive ganze Zahl Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle k} gibt es nur eine endliche Anzahl von Paaren perfekter Potenzen, deren Differenz Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle k} ist.
- Mit anderen Worten:
- Für jedes Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle k \in \mathbb N}
gibt es nur endlich viele Paare perfekter Potenzen Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle n, n'}
, sodass gilt:
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle k = n'-n}
- Für jedes Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle k \in \mathbb N}
gibt es nur endlich viele Paare perfekter Potenzen Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle n, n'}
, sodass gilt:
- Diese Vermutung ist die Verallgemeinerung der mittlerweile bewiesenen Catalanschen Vermutung, die den Fall Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle k=1} behandelt.
Erkennen von perfekten Potenzen
Es gibt viele verschiedene Arten, um zu erkennen, ob eine gegebene natürliche Zahl Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle n} eine perfekte Potenz ist oder nicht.
- Die einfachste Methode ist die, dass man alle möglichen primen Werte für die Hochzahl Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle k} über jeden der Teiler von Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle n} hinweg betrachtet, bis zu Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle k \leq \log_2 n} (dabei ist der Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \log_2 n} der Zweierlogarithmus, also der Logarithmus von Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle n} zur Basis 2).
- Beispiel:
- Seien Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle n_1, n_2, \ldots, n_j}
die Teiler der zu untersuchenden Zahl Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle n}
. Dann muss zumindest einer der Werte Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle n_1^2, n_2^2, \ldots, n_j^2, n_1^3, n_2^3, \ldots, n_j^3, n_1^5, n_2^5, \ldots}
gleich Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle n}
sein, wenn Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle n}
tatsächlich eine perfekte Potenz sein soll.
- Sei Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle n=117649} . Diese Zahl hat die echten Teiler Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle 7, 49, 343, 2401} und Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle 16807} (1 und 117649 sind keine echten Teiler). Es ist weiters Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle k \leq \log_2 117649 \approx 16,8441295} (es ist Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle 2^{16,8441295} \approx 117649} ) und somit kommen als Potenzen nur Primzahlen in Frage, die kleiner als 16 sind, also 2, 3, 5, 7, 11 und 13. Man muss also für alle 5 echten Teiler je 6 Potenzen, also insgesamt 30 Potenzen bis Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle k=16} ausrechnen (also Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle 7^2, 7^3, \ldots, 7^{13}, 49^2, \ldots , 49^{13}, 343^2, \ldots , 2401^2, \ldots , 16807^2, \ldots 16807^{13}} ) und kontrollieren, ob man als Ergebnis Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle n=117649} erhält (wobei man vor allem bei höheren Teilern nicht alle primen Potenzen durchprobieren muss, weil man eine viel zu hohe Zahl erhalten würde). Schon bei der achten Kontrolle, bei Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle 49^3=117649} , kann man erkennen, dass es sich bei Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle n=117649} tatsächlich um eine perfekte Potenz handelt. Würde man niemals mit diesen 30 Potenzen die Zahl Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle n=117649} herausbekommen, so wäre Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle n=117649} keine perfekte Potenz.
- Seien Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle n_1, n_2, \ldots, n_j}
die Teiler der zu untersuchenden Zahl Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle n}
. Dann muss zumindest einer der Werte Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle n_1^2, n_2^2, \ldots, n_j^2, n_1^3, n_2^3, \ldots, n_j^3, n_1^5, n_2^5, \ldots}
gleich Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle n}
sein, wenn Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle n}
tatsächlich eine perfekte Potenz sein soll.
- Beispiel:
Einzelnachweise
- ↑ Eric W. Weisstein: Perfect Power. In: MathWorld (englisch).
- ↑ Lluís Bibiloni, Pelegrí Viader, Jaume Paradís: On a Series of Goldbach and Euler. Abgerufen am 26. August 2021.
- ↑ Leonhard Euler: Variae observationes circa series infinitas. 1744, abgerufen am 26. August 2021.
- ↑ Thomas Lorenz: Die Catalan’sche Vermutung. Kapitel 5: Mihailescus Beweis der Catalan’schen Vermutung. Technische Universität Wien, S. 65–83, abgerufen am 26. August 2021.
- ↑ Eric W. Weisstein: Pillai's Conjecture. In: MathWorld (englisch).