Quanteninvariante
Im mathematischen Gebiet der Knotentheorie sind Quanteninvarianten Invarianten von Knoten, Verschlingungen und 3-Mannigfaltigkeiten, die mittels der Darstellungstheorie von Quantengruppen oder allgemeiner aus Lösungen der Yang-Baxter-Gleichung definiert werden.
Konstruktion via R-Matrizen
Gegeben seien eine R-Matrix Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle R=(R_{kl}^{ij})_{i,j,k,l}\colon V\otimes V\to V\otimes V} und ein Isomorphismus Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \mu\colon V\to V} , sowie eine Markow-Spur Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle Tr} .
Mittels der R-Matrix definiert man Darstellungen der Zopfgruppen Fehler beim Parsen (Konvertierungsfehler. Der Server („https://wikimedia.org/api/rest_“) hat berichtet: „Cannot get mml. Server problem.“): {\displaystyle B_{n}} durch
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \rho_n\colon B_n\to Aut(V^{\otimes n})}
- .
Mittels des Satzes von Alexander kann man jede Verschlingung als Abschluss eines Zopfes darstellen. Mittels der Markow-Spur erhält man aus dem so definierten Endomorphismus eine Invariante und mit dem Satz von Markow kann man zeigen, dass diese Invariante wohldefiniert ist.
Beispiele von Quanteninvarianten
- Kontsevichs universelle Knoteninvariante
- Kashaev-Invariante
- Witten–Reshetikhin–Turaev-Invariante (siehe auch: Chern-Simons-Funktional)
- Rozansky–Witten-Invariante
- LMO-Invariante
- Turaev–Viro-Invariante
- Dijkgraaf–Witten-Invariante
- Reshetikhin–Turaev-Invariante
- Casson-Walker-Invariante
- HOMFLY-Polynom
- Vassiliev-Invarianten (Invarianten endlichen Typs)
Weblinks
- Garoufalidis: Quantum Knot Invariants
Literatur
- N. Reshetikhin, V. G. Turaev: Invariants of 3-manifolds via link polynomials and quantum groups. In: Invent. Math. 103, no. 3, 1991, S. 547–597.
- Robion Kirby, Paul Melvin: The 3-manifold invariants of Witten and Reshetikhin-Turaev for sl(2,C). In: Invent. Math. 105, no. 3, 1991, S. 473–545.
- Tomotada Ohtsuki: Quantum invariants. A study of knots, 3-manifolds, and their sets. (= Series on Knots and Everything. 29). World Scientific Publishing, River Edge, NJ 2002, ISBN 981-02-4675-7.
- Vladimir G. Turaev: Quantum invariants of knots and 3-manifolds. (= de Gruyter Studies in Mathematics. 18). 2., überarb. Auflage. Walter de Gruyter & Co., Berlin 2010, ISBN 978-3-11-022183-1.