Regulärer lokaler Ring
Im mathematischen Teilgebiet der kommutativen Algebra versteht man unter einem regulären lokalen Ring einen noetherschen lokalen Ring, dessen maximales Ideal von Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle d} Elementen erzeugt werden kann, wenn Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle d} die Dimension des Ringes bezeichnet. Reguläre lokale Ringe beschreiben das Verhalten algebraisch-geometrischer Objekte in Punkten, in denen keine Singularitäten wie Spitzen oder Überkreuzungen vorliegen. Ein (nicht unbedingt lokaler) Ring heißt regulär, wenn alle seine Lokalisierungen reguläre lokale Ringe sind.
Dieser Artikel beschäftigt sich mit kommutativer Algebra. Insbesondere sind alle betrachteten Ringe kommutativ und haben ein Einselement. Für weitere Details siehe Kommutative Algebra.
Definition
Es sei ein Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle d} -dimensionaler noetherscher lokaler Ring mit maximalem Ideal Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \mathfrak m} und Restklassenkörper Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle k} . Dann heißt Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle A} regulär, wenn eine der folgenden äquivalenten Bedingungen erfüllt ist:
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \mathfrak m} kann von Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle d} Elementen erzeugt werden.
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \dim_k\mathfrak m/\mathfrak m^2=d.}
Ein beliebiger noetherscher Ring Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle A} heißt regulär, wenn alle seine lokalen Ringe regulär sind.
Eigenschaften
- Reguläre lokale Ringe sind faktoriell. Dies ist die Aussage des Auslander-Buchsbaum-Theorems.
- Kriterium von Serre: Ein noetherscher lokaler Ring ist genau dann regulär, wenn seine globale Dimension endlich ist.
- Aus dem Kriterium von Serre folgt: Lokalisierungen regulärer lokaler Ringe sind wieder regulär.
Beispiele
- Artinsche lokale Ringe sind genau dann regulär, wenn sie Körper sind.
- Reguläre lokale Integritätsringe der Dimension 1 sind gerade die diskreten Bewertungsringe.