Lemma von Margulis
In der Differentialgeometrie, einem Teilgebiet der Mathematik, beschreibt das Lemma von Margulis oder Margulis-Lemma die Topologie des „dünnen Teils“ einer negativ gekrümmten riemannschen Mannigfaltigkeit. Es dient vor allem zur Beschreibung der Enden hyperbolischer Mannigfaltigkeiten endlichen Volumens.
Es ist nach Grigori Alexandrowitsch Margulis benannt.
Dünner und dicker Teil einer Mannigfaltigkeit
Für eine riemannsche Mannigfaltigkeit und eine Konstante bezeichnet man als -dünnen Teil der Mannigfaltigkeit den Teil
(wobei den Injektivitätsradius im Punkt bezeichnet) und als -dicken Teil das Komplement des -dünnen Teils.
ist also die Menge derjenigen , zu denen es eine geschlossene, nicht nullhomotope, Kurve der Länge mit gibt. Häufig spricht man auch nur vom dünnen und dicken Teil einer -dimensionalen Mannigfaltigkeit und meint damit den -dünnen und -dicken Teil für ein , welches kleiner ist als die unten definierte Margulis-Konstante ist.
Lemma von Margulis (differentialgeometrische Formulierung)
Das Lemma von Margulis besagt, dass es zu jeder Dimension eine Margulis-Konstante gibt, so dass für alle vollständigen riemannschen Mannigfaltigkeiten der Dimension mit Schnittkrümmungen im Intervall und für alle der -dünne Teil fast-nilpotente Fundamentalgruppe hat: es gibt in eine nilpotente Untergruppe vom Index für eine nur von abhängende Konstante .
Lemma von Margulis (gruppentheoretische Formulierung)
Das Lemma von Margulis besagt, dass es zu jeder Dimension eine Margulis-Konstante gibt, so dass die folgende Aussage für alle einfach zusammenhängenden vollständigen riemannschen Mannigfaltigkeiten der Dimension mit Schnittkrümmungen im Intervall Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \left[-1,0\right]} und für alle Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \epsilon<\epsilon_n} zutrifft:
Es sei Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \widetilde{M}} eine einfach zusammenhängende riemannsche Mannigfaltigkeit der Dimension Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle n} mit Schnittkrümmungen im Intervall Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \left[-1,0\right]} . Sei Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \Gamma} eine eigentlich diskontinuierlich wirkende Gruppe von Isometrien von Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \widetilde{M}} und Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle x\in\widetilde{M}} . Dann ist die von
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \left\{\gamma\in\Gamma\colon d(\gamma(x),x)<\epsilon\right\}}
erzeugte Untergruppe Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \Gamma_\epsilon(x)\subset \operatorname{Isom}(\widetilde{M})} fast-nilpotent.
Der Spezialfall für Matrizengruppen ist auch als Lemma von Zassenhaus bekannt: Es gibt eine Konstante Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \mu_N} , so dass jede von Matrizen der Norm Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle <\mu_N} erzeugte diskrete Untergruppe Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \Gamma\subset GL(N,\Complex)} fast-nilpotent ist. Tatsächlich gilt das folgende auf Hans Zassenhaus zurückgehende elementare Lemma: Wenn zwei Matrizen Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle A,B\subset O^+(n,1)} eine diskrete Gruppe erzeugen und Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \max\left\{\parallel A-Id\parallel,\parallel B-Id\parallel\right\}<2-\sqrt{3}} gilt, dann kommutieren A und B.
Die gruppentheoretische und differentialgeometrische Formulierung des Margulis-Lemmas sind äquivalent zueinander. Die Äquivalenz erhält man vermittels der Wirkung von Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \Gamma=\pi_1(M,x_0)} auf der universellen Überlagerung Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle p\colon \widetilde{M}\to M} . Für ein Urbild Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \tilde{x}_0\in p^{-1}(x_0)\subset \widetilde{M}} entspricht Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle d(\tilde{x}_0,\gamma \tilde{x}_0)} der Länge des kürzesten Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \gamma\in \pi_1(M,x_0)} repräsentierenden geschlossenen Weges.
Enden hyperbolischer Mannigfaltigkeiten endlichen Volumens
Es sei Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle M} eine vollständige hyperbolische Mannigfaltigkeit endlichen Volumens. Dann ist der Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \epsilon} -dicke Teil Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle M_{\ge\epsilon}} kompakt (für beliebige Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \epsilon>0} ) und für die Gruppe Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \Gamma_{\epsilon}} gibt es (für Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \epsilon<\epsilon_n} ) die folgenden Möglichkeiten:[1]
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \Gamma_\epsilon} ist eine Gruppe parabolischer Isometrien mit demselben Fixpunkt im Unendlichen
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \Gamma_\epsilon = \Z} erzeugt von einer hyperbolischen Isometrie
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \Gamma_\epsilon = \left\{id\right\}}
Daraus ergeben sich für die Topologie der Zusammenhangskomponenten des Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \epsilon} -dünnen Teils Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle M_{<\epsilon}} die folgenden Möglichkeiten:[2]
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle V\times\left[0,\infty\right]} für eine geschlossene flache Mannigfaltigkeit Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle V} der Dimension Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle n-1}
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle B^{n-1}\times S^1} oder Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle S^1}
Im ersten Fall handelt es sich um sogenannte Spitzen (engl.: cusps). Im zweiten Fall handelt es sich um Tubenumgebungen geschlossener Geodäten (oder um geschlossene Geodäten der Länge Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \epsilon} ).
Margulis-Zahlen
Für eine riemannsche Mannigfaltigkeit Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle M} ist die Margulis-Zahl Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \mu(M)} die größte reelle Zahl, so dass die Konklusion des Margulis-Lemmas für alle Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \epsilon<\mu(M)} gilt.
Für hyperbolische 3-Mannigfaltigkeiten ist Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \mu(M)\ge 0{,}104} .[3] Peter Shalen bewies, dass für fast alle hyperbolischen 3-Mannigfaltigkeiten Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \mu(M)\le 0{,}29} gilt. Aufgrund numerischer Berechnungen wird vermutet, dass immer Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \mu(M)\le 0{,}616} gilt.[4]
Für hyperbolische Mannigfaltigkeiten der Dimension Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle n} gilt
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \mu(M)\ge \frac{2^{\nu+1}}{3^{\nu+1}\pi^\nu}\frac{\Gamma(\frac{\nu+2}{2})^2}{\Gamma(\nu+2)}}
mit Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \nu=\left[\frac{n+1}{2}\right]} .[5] Umgekehrt gibt es die auf Kapovich zurückgehende Ungleichung Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \epsilon_n\le\frac{C_n}{\sqrt{n}}} mit einer explizit bestimmbaren Konstante Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle C_n} .[6]
Kragen-Lemma
Aus dem Lemma von Margulis lässt sich herleiten, dass sehr kurze geschlossene Geodäten eine Kragenumgebung großen hyperbolischen Volumens besitzen müssen. Eine quantitative Beschreibung dieses Zusammenhangs für Flächen liefert das Kragen-Lemma (engl.: collar lemma), dessen erste Version 1974 von Linda Keen bewiesen wurde.[7] Die bestmögliche Abschätzung geht auf Randol zurück: in einer hyperbolischen Fläche hat eine geschlossene Geodäte der Länge Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle l} eine Kragenumgebung der Breite Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle w} mit Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \cosh\left(\tfrac{w}{2}\right) = \coth\left(\tfrac{l}{2}\right)} .[8] Man beachte, dass Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \lim_{l\to0}\coth\left(\tfrac{l}{2}\right) = \infty} ist.
Literatur
- Každan, D. A.; Margulis, G. A.: A proof of Selberg's hypothesis. (Russian) Mat. Sb. (N.S.) 75 (117) 1968, 163–168.
- Raghunathan, M. S.: Discrete subgroups of Lie groups. Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 68. Springer-Verlag, New York-Heidelberg, 1972.
- Buser, Peter; Karcher, Hermann: Gromov's almost flat manifolds. Astérisque, 81. Société Mathématique de France, Paris, 1981.
- Ballmann, Werner; Gromov, Mikhael; Schroeder, Viktor: Manifolds of nonpositive curvature. Progress in Mathematics, 61. Birkhäuser Boston, Inc., Boston, MA, 1985. ISBN 0-8176-3181-X
- Benedetti, Riccardo; Petronio, Carlo: Lectures on hyperbolic geometry. Universitext. Springer-Verlag, Berlin, 1992. ISBN 3-540-55534-X
Weblinks
- Bromberg: The Thick-Thin Decomposition
- Gallot: Margulis Lemmas without curvature
- Shalen: Margulis Numbers of Hyperbolic 3-Manifolds
- Bergeron, Guilloux: Géométrie hyperbolique et représentations de groupes de surface (Chapitre III: Théorème de Bieberbach et lemme de Margulis)
- Martelli: Geometric Topology (Chapter 4: Thin-thick decomposition)
Einzelnachweise
- ↑ Benedetti-Petronio, Theorem D.2.2
- ↑ Benedetti-Petronio, Theorem D.3.3
- ↑ Robert Meyerhoff. A lower bound for the volume of hyperbolic 3-manifolds. Canad. J. Math., 39(5):1038–1056, 1987.
- ↑ Peter Shalen. Topology and geometry in dimension three, 103–109, Contemp. Math., 560, Amer. Math. Soc., Providence, RI, 2011.
- ↑ Ruth Kellerhals. On the structure of hyperbolic manifolds. Israel J. Math. 143 (2004), 361–379.
- ↑ Michail Belolipetsky. Hyperbolic orbifolds of small volume. (Erscheint in den Proceedings des ICM 2014) pdf
- ↑ Linda Keen: Collars on Riemann surfaces. Discontinuous groups and Riemann surfaces (Proc. Conf., Univ. Maryland, College Park, Md., 1973), pp. 263–268. Ann. of Math. Studies, No. 79, Princeton Univ. Press, Princeton, N.J., 1974
- ↑ Burton Randol: Cylinders in Riemann surfaces. Comment. Math. Helv. 54 (1979), no. 1, 1–5.