Satz von Liouville (Physik)
Der Satz von Liouville (auch Liouville-Theorem genannt, nach Joseph Liouville) ist ein Satz aus dem Bereich der theoretischen Mechanik, der besagt, dass das von benachbarten Trajektorien im Phasenraum eingeschlossene (mehrdimensionale) Volumen als Funktion der Zeit konstant ist. Der Satz gilt für alle durch den Hamilton-Formalismus beschriebenen Systeme. Die Hamilton-Funktion kann dabei auch explizit von der Zeit abhängen. Eng verwandt mit dem Satz von Liouville und leicht daraus herleitbar ist die Liouville-Gleichung.
Herleitung
Im Rahmen des Hamilton-Formalismus ist der momentane Zustand eines mechanischen Systems gegeben durch kanonische Koordinaten Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle q_i} und kanonische Impulse Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle p_i} mit Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle 1\leq i\leq N} , d. h. durch einen Punkt Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle X=(q_i,p_i)} im Phasenraum. Die Hamilton-Funktion Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle H(q,p,t)} des Systems definiert ein Vektorfeld Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \dot{X} = \left( \frac{dq_{i}}{dt}, \frac{dp_{i}}{dt} \right) = \left( \frac{\partial H}{\partial p_{i}}, -\frac{\partial H}{\partial q_{i}} \right)} im Phasenraum, welches die Zeitentwicklung des Systems beschreibt. Die Lösung der Gleichung ist der Fluss Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle X(t)} . Anwenden des Divergenzoperators auf das Vektorfeld liefert
Das Geschwindigkeitsfeld Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \dot{X}} und der Fluss Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle X\left(t\right)} sind also quellenfrei. Man kann sich die Dynamik im Phasenraum daher als Strömung einer inkompressiblen Flüssigkeit veranschaulichen. Dass das Verschwinden der Divergenz eines Geschwindigkeitsfeldes Inkompressibilität impliziert, lässt sich formal mit Hilfe des Gaußschen Satzes zeigen, ähnlich wie in der Hydrodynamik.
Alternativ und mehr formal ist der Satz von Liouville eine Folge der Invarianz der -Form unter symplektischen Transformationen, also auch unter kanonischen Transformationen sowie in der Zeitentwicklung. Damit sind auch die -Form Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \omega=d\omega^{\left(1\right)}=\sum dp_{i}\wedge dq_{i}} sowie ihre Potenzen invariant. Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \omega^{N}} ist das Phasenraumvolumen.
Anwendungen
Der Satz von Liouville spielt eine grundlegende Rolle in der statistischen Mechanik; es gibt aber auch einfachere Anwendungen.
Eine Anwendung betrifft die transversale Ausdehnung von Teilchen- oder Lichtstrahlen, etwa in Teilchenbeschleunigern oder optischen Instrumenten. Man kann mit Linsensystemen einen Strahl zwar fokussieren, d. h. seine transversale Ausdehnung verkleinern, das geht aber nur auf Kosten der transversalen Impulse. Die Ausdehnung der transversalen Impulse muss sich so vergrößern, dass das Gesamtvolumen, d. h. das Produkt der Ausdehnung im Orts- und Impulsraum, konstant bleibt. Die Bezeichnung für das entsprechende Phasenraumvolumen in der geometrischen Optik ist Etendue.
Ein anderes Beispiel ist ein einatomiges ideales Gas mit Volumen Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle V} und Temperatur . Bei adiabatischer Kompression bleibt das Produkt Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle VT^{3/2}} konstant. Da die Temperatur proportional zum Impulsquadrat der Teilchen ist, entspricht die Konstante dem Phasenraumvolumen eines Teilchens (im idealen Gas sind die Teilchen voneinander unabhängig).
In einem mehratomigen Gas sind für ein Gasmolekül insgesamt nicht Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle 3} , sondern Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle f} Translations-, Rotations- und Schwingungsfreiheitsgrade relevant. Der Impulsanteil des Phasenraums eines Moleküls ist daher das Produkt von Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle f} Impulsen. Bei adiabatischer Kompression ist daher Fehler beim Parsen (Konvertierungsfehler. Der Server („https://wikimedia.org/api/rest_“) hat berichtet: „Cannot get mml. Server problem.“): {\displaystyle VT^{f/2}} konstant. (Die Rotations- und Schwingungskoordinaten selber sind zyklisch und von der Kompression nicht betroffen.)
Literatur
- Franz Schwabl: Statistische Mechanik. Springer 2006, ISBN 978-3-540-31095-2
- Theodore Frankel: The Geometry of Physics. Cambridge University Press 2012, ISBN 978-1-107-60260-1