Satz von Wagner

aus Wikipedia, der freien Enzyklopädie

Der Satz von Wagner, englisch Wagner’s theorem, ist ein Lehrsatz aus dem mathematischen Teilgebiet der Topologischen Graphentheorie, welcher im Jahre 1937 von dem Mathematiker Klaus Wagner veröffentlicht wurde. Der Satz ist verwandt mit dem Satz von Kuratowski und gibt wie dieser eine Charakterisierung plättbarer Graphen.

Formulierung des Satzes

Abb. 1: Der Kuratowski-Graph Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle K_5}
Abb. 2: Der Kuratowski-Graph Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle K_{3,3}}

Der Satz lautet wie folgt:[1]

Ein endlicher schlichter Graph Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle G=(V,E)} ist plättbar genau dann, wenn in ihm kein Teilgraph enthalten ist, der zu einem der beiden Kuratowski-Graphen und kontrahierbar ist.

Anwendung

Mit dem Satz von Wagner lässt sich zeigen, dass der Petersen-Graph nicht plättbar ist.[2]

Folgerung

Die beiden Sätze von Kuratowski und Wagner führen zusammengenommen zu folgendem Resultat:[3]

Für einen endlichen schlichten Graphen sind gleichwertig:
 Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle (I) }  : Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle G} ist plättbar.
 Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle (II) }  : In Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle G} ist keiner der beiden Kuratowski-Graphen als Minor enthalten.
 Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle (III) }  : In ist keiner der beiden Kuratowski-Graphen als topologischer Minor enthalten.

Siehe auch

Literatur

  • Reinhard Diestel: Graph Theory (= Graduate Texts in Mathematics. Band 173). 3. Auflage. Springer Verlag, Berlin / Heidelberg / New York 2005, ISBN 3-540-26182-6 (MR2159259).
  • Dieter Jungnickel: Graphs, Networks and Algorithms. With 209 Figures and 9 Tables (= Algorithms and Computation in Mathematics. Band 5). 3. Auflage. Springer Verlag, Berlin / Heidelberg / New York 2008, ISBN 978-3-540-72779-8 (MR2363884).
  • Klaus Wagner: Über eine Eigenschaft der ebenen Komplexe. In: Mathematische Annalen. Band 114, 1937, S. 570–590, doi:10.1007/BF01594196 (MR1513158).
  • Klaus Wagner: Graphentheorie (= BI-Hochschultaschenbücher. 248/248a). Bibliographisches Institut, Mannheim (u. a.) 1970, ISBN 3-411-00248-4 (MR0282850).

Einzelnachweise und Fußnoten

  1. Dieter Jungnickel: Graphs, Networks and Algorithms. 2008, S. 23–24
  2. Jungnickel, op. cit., S. 24
  3. Reinhard Diestel: Graph Theory. 2005, S. 96 ff., 101