Satz von der offenen Abbildung (Lokalkompakte Gruppen)

aus Wikipedia, der freien Enzyklopädie

Der Satz von der offenen Abbildung in der mathematischen Theorie der lokalkompakten Gruppen besagt, dass ein Gruppenhomomorphismus in einer bestimmten Situation automatisch offen ist.

Begriffe

Eine lokalkompakte Gruppe ist eine topologische Gruppe, die als topologischer Raum ein lokalkompakter Hausdorffraum ist. Ein solcher Raum heißt σ-kompakt oder abzählbar im Unendlichen, wenn er die abzählbare Vereinigung kompakter Teilmengen ist. Gruppenhomomorphismen zwischen topologischen Gruppen heißen stetig bzw. offen, wenn sie als Abbildungen zwischen den topologischen Räumen stetig bzw. offen sind.

Formulierung des Satzes

Es seien eine σ-kompakte, lokalkompakte Gruppe und Fehler beim Parsen (Konvertierungsfehler. Der Server („https://wikimedia.org/api/rest_“) hat berichtet: „Cannot get mml. Server problem.“): {\displaystyle f\colon G\rightarrow H} ein stetiger, surjektiver Gruppenhomomorphismus auf eine lokalkompakte Gruppe Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle H} . Dann ist offen.[1][2][3]

Beispiele

  • Die Abbildung
Fehler beim Parsen (Konvertierungsfehler. Der Server („https://wikimedia.org/api/rest_“) hat berichtet: „Cannot get mml. Server problem.“): {\displaystyle f\colon \mathbb {R} \rightarrow \mathbb {T} :=\{z\in \mathbb {C} \mid |z|=1\},\quad t\mapsto e^{\mathrm {i} t}}
ist ein stetiger, surjektiver Gruppenhomomorphismus, wenn man mit der Addition und mit der Multiplikation als Gruppenstruktur versieht und sie die üblichen Topologien tragen. Nach obigem Satz ist offen.
wegen des Determinantenmultiplikationssatzes ein Gruppenhomomorphismus, wenn man auf die Multiplikation betrachtet. Die Determinante ist stetig, denn sie ist nach der Leibniz-Formel nur aus Summen von Produkten der Matrixkomponenten aufgebaut. Die Determinate ist offenbar auch surjektiv, denn ist Fehler beim Parsen (Konvertierungsfehler. Der Server („https://wikimedia.org/api/rest_“) hat berichtet: „Cannot get mml. Server problem.“): {\displaystyle t\in \mathbb {R} ^{*}} , so bildet die Determinante die Diagonalmatrix mit der Diagonalen auf ab. und sind als offene Teilmengen der lokalkompakten Räume und wieder lokalkompakt, und leicht überlegt man sich, dass sogar σ-kompakt ist. Damit kann man obigen Satz anwenden und erhält, dass die angegebene Determinantenabbildung offen ist.
  • Sei die additive Gruppe mit der üblichen Topologie und die Gruppe der reellen Zahlen mit der diskreten Topologie. Beides sind offenbar lokalkompakte Gruppen, ist σ-kompakt, hingegen nicht. Daher kann man den Satz nicht auf den stetigen, surjektiven Gruppenhomomorphismus anwenden und tatsächlich ist diese Abbildung auch nicht offen. Also kann man in obigem Satz nicht auf die Voraussetzung der σ-Kompaktheit verzichten.[4]

Einzelnachweise

  1. J. Hilgert, K.-H. Neeb: Lie-Gruppen und Lie-Algebren, Vieweg-Verlag (1991), ISBN 978-3-528-06432-7
  2. Markus Stroppel: Locally Compact Groups, European Mathematical Society 2006, ISBN 3-03719-016-7, Satz 6.19
  3. Sidney A. Morris: Pontryagin Duality and the Structure of locally compact abelian groups, Cambridge University Press, ISBN 0-5212-1543-9, Kap. 1, Theorem 3
  4. Markus Stroppel: Locally Compact Groups, European Mathematical Society 2006, ISBN 3-03719-016-7, Beispiel 6.20