Matrixkoeffizient

aus Wikipedia, der freien Enzyklopädie
(Weitergeleitet von Schur-Orthogonalität)

Als Matrixkoeffizienten bezeichnet man im mathematischen Gebiet der Darstellungstheorie gewisse zu einer Gruppendarstellung assoziierte Funktionen auf der Gruppe.

Zum Beispiel kann man nach Wahl einer Basis im Darstellungsraum die Darstellung durch den Gruppenelementen zugeordnete Matrizen beschreiben, deren einzelne Einträge Matrixkoeffizienten im Sinne der allgemeinen Definition sind.

Definition

Sei eine Darstellung einer Gruppe Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle G} auf einem Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \Complex} -Hilbertraum Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle V} mit Skalarprodukt Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \langle \cdot,\cdot\rangle} .

Für je zwei Vektoren Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle v,w\in V} definiert man den Matrixkoeffizienten durch

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle c_{v,w}(g)=\langle \rho(g)v,w\rangle} .

Rekonstruktion der Darstellung aus ihren Matrixkoeffizienten

Nach Wahl einer Basis Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \left\{e_i\right\}_{i\in I}} von Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle V} lässt sich jedes Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \rho(g)} für Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle g\in G} aus den Matrixkoeffizienten

bestimmen.

Schur-Orthogonalität

Sei eine kompakte Gruppe mit Haarmaß , normiert auf , und sei Fehler beim Parsen (Konvertierungsfehler. Der Server („https://wikimedia.org/api/rest_“) hat berichtet: „Cannot get mml. Server problem.“): {\displaystyle \dim(V)<\infty } . Dann ist

für alle .

Klassen von Darstellungen

Eine Darstellung heißt diskret, wenn alle Matrixkoeffizienten quadratisch integrierbar sind, also in liegen. Sie heißt temperiert, wenn die Matrixkoeffizienten in für ein liegen.