Tschebyschow-Polynom

aus Wikipedia, der freien Enzyklopädie

Tschebyschow-Polynome erster Art Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle T_n(x)} und zweiter Art Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle U_n(x)} sind Folgen orthogonaler Polynome, die bedeutende Anwendungen in der Polynominterpolation, in der Filtertechnik und in anderen Gebieten der Mathematik haben. Sie sind benannt nach Pafnuti Lwowitsch Tschebyschow, dessen Name in der Literatur auch als Tschebyscheff, Tschebycheff, Tschebyschew, Tschebyschev, Chebyshev oder Chebychev transkribiert wird.

Tschebyschow-Polynome erster Art sind Lösung der Tschebyschow-Differentialgleichung

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \left(1-x^2\right)\, y''-x \, y'+n^2 \, y = 0, }

und Tschebyschow-Polynome zweiter Art sind Lösung von

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \left(1-x^2\right)\,y'' - 3x\,y' + n(n+2)\,y = 0.}

Beide Differentialgleichungen sind spezielle Fälle der Sturm-Liouvilleschen Differentialgleichung.

Tschebyschow-Polynome erster Art

Definition

Die Funktionen

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \begin{align} y_g(x) &= 1 + \sum_{p=1}^\infty \frac{\prod_{k=0}^{p-1} \left(\left(2k\right)^2-n^2\right)}{(2p)!} x^{2p} = 1 + \sum_{p=1}^\infty (-1)^p \frac{\prod_{k=0}^{p-1} \left(n^2-\left(2k\right)^2\right)}{(2p)!} x^{2p} \\ & = 1 - {n^2 \over 2!} \, x^2 + {n^2 \, \left(n^2-4\right) \over 4!} \, x^4 - {n^2 \, (n^2-4)\, \left(n^2-16\right) \over 6!} \, x^6 \pm \cdots \end{align}}

und

bilden ein Fundamentalsystem für die Tschebyschow-Differentialgleichung.

[[Hilfe:Cache|Fehler beim Thumbnail-Erstellen]]:
Tschebyschow-Polynome erster Art der Ordnung 0 bis 5.

Für ganzzahlige Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle n} bricht jeweils eine dieser Reihen nach endlich vielen Gliedern ab, Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle y_g(x)} für gerade und Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle y_u(x)} für ungerade Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle n} , und man erhält Polynome als Lösung. Mit der Normierung Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle T_n(1)=1} werden diese als Tschebyschow-Polynome bezeichnet. Die ersten neun Polynome dieser Art sind:

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \begin{align} T_0(x)&=1 \\ T_1(x)&=x \\ T_2(x)&=2 x^2 - 1 \\ T_3(x)&=4 x^3 - 3 x\\ T_4(x)&=8 x^4 - 8 x^2 + 1\\ T_5(x)&=16 x^5 - 20 x^3 + 5 x\\ T_6(x)&=32 x^6 - 48 x^4 + 18 x^2 - 1 \\ T_7(x)&=64 x^7 - 112 x^5 + 56 x^3 - 7 x \\ T_8(x)&=128 x^8 - 256 x^6 + 160 x^4 - 32 x^2 + 1 \\ \end{align}}

Eigenschaften

Rekursionsformeln der Tschebyschow-Polynome:

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle T_{n+1}(x) = 2x ~ T_n(x)-T_{n-1} (x) }

und

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle T_{mn}(x)=T_m\bigl(T_n(x)\bigr).}

Mit Hilfe der trigonometrischen Funktionen bzw. der Hyperbelfunktionen sind die Tschebyschow-Polynome darstellbar als

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle T_n(x) = \begin{cases} \cos\left(n \, \arccos x\right) & \text{für} \quad x \in [-1,1] \\ \cosh\left(n \, \operatorname{arcosh}(x) \right) & \text{für} \quad x > 1 \\ (-1)^n \cosh\left(n \, \operatorname{arcosh}(-x) \right) & \text{für} \quad x < -1 \end{cases}}

oder

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle T_n(\cos \theta) = \cos(n \theta)}

und auch

.[1]

Die Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle n} Nullstellen des Tschebyschow-Polynoms Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle T_n(x)} sind gegeben durch

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \cos\left(\tfrac{2j+1}{2n}\,\pi\right) \quad\mathrm{f\ddot{u}r}\quad j = 0, \ldots, n-1.}

Daraus ergibt sich die faktorisierte Darstellung der Tschebyschow-Polynome

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle T_n(x)=2^{n-1}\left(x-\cos\left(\frac{1}{2n}\pi\right)\right)\left(x-\cos\left(\frac{3}{2n}\pi\right)\right)\ldots\left(x-\cos\left(\frac{2n-1}{2n}\pi\right)\right).}

Die Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle n-1} relativen Extrema von Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle T_n(x)} liegen bei

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \cos\left(\tfrac{j}{n}\,\pi\right) \quad\mathrm{f\ddot{u}r}\quad j = 1, \ldots, n-1}

und haben abwechselnd die Werte 1 und −1.

Tschebyschow-Polynome Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle T_n(x)} sind im geschlossenen Intervall Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle [-1,1]} orthogonal bezüglich des gewichteten Skalarproduktes

Man kann sich diese daher auch über das Gram-Schmidtsche Orthogonalisierungsverfahren (mit Normierung) herleiten.

Anwendungen

In der Filtertechnik werden die Tschebyschow-Polynome bei den Tschebyscheff-Filtern verwendet. Bei der Polynominterpolation zeichnen sich diese Polynome durch einen sehr günstigen, gleichmäßigen Fehlerverlauf aus. Dazu sind als Interpolationsstellen die geeignet verschobenen Nullstellen des Tschebyschow-Polynoms passenden Grades zu verwenden. Wegen ihrer Minimalität bilden sie auch die Grundlage für die Tschebyschow-Iteration und für Fehlerschranken bei Krylow-Unterraum-Verfahren für Lineare Gleichungssysteme.

Tschebyschow-Polynome zweiter Art

[[Hilfe:Cache|Fehler beim Thumbnail-Erstellen]]:
Tschebyschow-Polynome zweiter Art der Ordnung 0 bis 5.

Auch die Tschebyschow-Polynome zweiter Art Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle U_n(x)} werden über eine rekursive Bildungsvorschrift definiert:

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \begin{align} U_0(x) & = 1 \\ U_1(x) & = 2x \\ U_{n+1}(x) & = 2xU_n(x) - U_{n-1}(x), \end{align} }

bemerkenswerterweise mit derselben Rekursionsbeziehung wie die Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle T_n} . Und diese Rekursionsbeziehung gilt mit

 

auch für Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle n=0} .

Die erzeugende Funktion für Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle U_n} ist:

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \sum_{n=0}^{\infty}U_n(x) t^n = \frac{1}{1-2 t x+t^2}}

Die ersten acht Polynome dieser Art sind:

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \begin{align} U_0(x) &= 1 \\ U_1(x) &= 2x \\ U_2(x) &= 4x^2 - 1 \\ U_3(x) &= 8x^3 - 4x \\ U_4(x) &= 16x^4 - 12x^2 + 1 \\ U_5(x) &= 32x^5 - 32x^3 + 6x \\ U_6(x) &= 64x^6 - 80x^4 + 24x^2 - 1 \\ U_7(x) &= 128x^7 - 192x^5 + 80x^3 - 8x \end{align}}

Mit Hilfe der trigonometrischen Funktionen sind die Tschebyschow-Polynome zweiter Art zunächst nur für darstellbar als

wegen der stetigen Hebbarkeit an diesen Stellen aber für alle . Diese Formel hat große strukturelle Ähnlichkeit zum Dirichlet-Kern :

Nimmt man Hyperbelfunktionen mit hinzu, dann ist für

Tschebyschow-Polynome sind im abgeschlossenen Intervall orthogonal bezüglich des gewichteten Skalarproduktes

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \langle f,g\rangle=\int_{-1}^1 f(x)\cdot g(x)\cdot{\sqrt{1-x^2}}\, \mathrm dx}

Historie

Erstmals veröffentlichte Tschebyschow seine Untersuchungen zu den Tschebyschow-Polynomen 1859 und 1881[2] in folgenden Aufsätzen:

  • Sur les questions de minima qui se rattachent a la représentation approximative des fonctions. Oeuvres Band I, 1859, S. 273–378.
  • Sur les fonctions qui s'écartent peu de zéro pour certaines valeurs de la variable. Oeuvres Band II, 1881, S. 335–356.

Clenshaw-Algorithmus

In der numerischen Mathematik werden Linearkombinationen von Tschebyschow-Polynomen mit dem Clenshaw-Algorithmus ausgewertet.

Literatur

  • Il'ja N, Bronstein, Konstantin A. Semendjajew, Gerhard Musiol, Heiner Mühlig: Taschenbuch der Mathematik. 5., überarbeitete und erweiterte Auflage, unveränderter Nachdruck. Verlag Harri Deutsch, Thun u. a. 2001, ISBN 3-8171-2005-2.

Weblinks

Einzelnachweise