Verteilungsfunktion (Maßtheorie)

aus Wikipedia, der freien Enzyklopädie

Die Verteilungsfunktion eines Maßes ist ein Begriff aus der Maßtheorie, einem Teilgebiet der Mathematik, das sich mit verallgemeinerten Längen- und Volumenbegriffen beschäftigt. Jedem endlichen Maß auf den reellen Zahlen kann eine Verteilungsfunktion zugeordnet werden. Verteilungsfunktionen von Wahrscheinlichkeitsmaßen spielen eine wichtige Rolle in der Stochastik. In der Maßtheorie werden Verteilungsfunktionen verwendet, um Konvergenz von Maßen zu überprüfen.

Definition

Gegeben sei der Messraum Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle (\R, \mathcal B(\R)) } , wobei Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \mathcal B } die Borelsche σ-Algebra bezeichnet, und ein endliches Maß Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \mu } auf diesem Messraum. Dann heißt

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle F_\mu(x):=\mu((-\infty,x]) }

die Verteilungsfunktion des Maßes Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \mu } .

Außerdem nennt man jede monoton wachsende, rechtsseitig stetige und beschränkte reelle Funktion Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle F } eine Verteilungsfunktion, da sie durch

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \mu_F((a,b]):=F(b)-F(a) }

ein endliches Maß definiert. Ein Spezialfall sind diejenigen Funktionen, für die zusätzlich gilt

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \lim_{x \to - \infty}F(x)=0 \text{ und }\lim_{x \to \infty}F(x)=1 } ,

dies sind genau die Verteilungsfunktionen im Sinne der Wahrscheinlichkeitstheorie.

Beispiele

Betrachtet man das Dirac-Maß auf der 1

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \delta_1(A):= \begin{cases} 1 & \text{falls } 1 \in A \\ 0 & \text{falls } 1 \notin A\end{cases} }

Dann lautet die Verteilungsfunktion

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle F_{\delta_1}=\begin{cases} 0 & \text{falls } x <1 \\ 1 & \text{falls } x \geq 1 \end{cases} } .

Eigenschaften

  • Definiert man eine Äquivalenzrelation auf den monoton wachsenden, rechtsseitig stetigen und beschränkten Funktionen durch
Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle F \sim G \iff F-G \text{ ist konstant } }
und bezeichnet die Äquivalenzklassen mit Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle [F] } , so ist Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \mu \mapsto [F_\mu] } eine Bijektion. Dabei wird jedem endlichen Maß auf den reellen Zahlen die Äquivalenzklasse seiner Verteilungsfunktion zugewiesen. Daher unterscheidet man meistens nicht zwischen dem Maß und der Verteilungsfunktion. Für Verteilungsfunktionen im Sinne der Wahrscheinlichkeitstheorie ist diese Äquivalenzklassenbildung nicht nötig, da sie bereits durch Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \lim_{x \to - \infty}F(x)=0 } und Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \lim_{x \to \infty}F(x)=1 } eindeutig festgelegt sind.
  • Setzt man
Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \Vert F_\mu \Vert^*:= \lim_{x \to \infty} \left( F_\mu(x)-F_\mu(-x)\right) } ,
so ist Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \Vert F_\mu \Vert^*=\Vert \mu\Vert_{TV} } . Dabei bezeichnet Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \Vert \cdot \Vert_{TV} } die Totalvariationsnorm

Konvergenz

Vage Konvergenz

Eine Folge Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle (F_n)_{n \in \N } } von Verteilungsfunktionen heißt vage konvergent gegen die Verteilungsfunktion Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle F } , wenn sie an allen Stetigkeitspunkten von Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle F } punktweise gegen Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle F } konvergiert, wenn also

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \lim_{n \to \infty} F_n(x)=F(x) }

für alle Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle x \in \R } , an denen Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle F } stetig ist, gilt.

Schwache Konvergenz

Eine Folge Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle (F_n)_{n \in \N } } von Verteilungsfunktionen heißt schwach konvergent gegen die Verteilungsfunktion Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle F } , wenn sie vage konvergent ist und

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \lim_{n \to \infty} \Vert F_n\Vert^*=\Vert F\Vert^* }

gilt.

Gehören die Verteilungsfunktionen zu Wahrscheinlichkeitsmaßen, so kann auf die zweite Bedingung verzichtet werden, da dann immer Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \|F_n\|^*=1 } gilt. Somit fallen dann schwache und vage Konvergenz zusammen. Für Wahrscheinlichkeitsmaße lässt sich die schwache Konvergenz der Verteilungsfunktionen mit dem Lévy-Abstand metrisieren.

Bemerkung

Die schwache und die vage Konvergenz von Verteilungsfunktionen wird in der Literatur nicht eindeutig verwendet. Teils wird nicht zwischen vager und schwacher Konvergenz differenziert, da diese Begriffe für Wahrscheinlichkeitsmaße zusammenfallen, teils wird auch die punktweise Konvergenz an allen Stetigkeitsstellen als schwache Konvergenz bezeichnet. Dies entspräche der hier beschriebenen vagen Konvergenz. Für Verteilungsfunktionen in Sinne der Wahrscheinlichkeitstheorie, die über reelle Zufallsvariablen definiert werden, findet sich auch die Bezeichnung konvergent in Verteilung oder stochastisch konvergent.[1]

Wichtige Sätze

Satz von Helly-Bray

Nach dem Satz von Helly-Bray gilt:

  • Konvergiert eine Folge von Verteilungsfunktionen Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle (F_n)_{n \in \N } } vage gegen Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle F } , so konvergiert Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \mu_n } vage im Sinne der Maßtheorie gegen Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \mu } .
  • Konvergiert eine Folge von Verteilungsfunktionen Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle (F_n)_{n \in \N } } schwach gegen Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle F } , so konvergiert Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \mu_n } schwach im Sinne der Maßtheorie gegen Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \mu } .

Modifiziert man die Folgen von Verteilungsfunktionen mit einer Folge reeller Zahlen, so lässt sich auch die Rückrichtung zeigen.

Auswahlsatz von Helly

Nach dem Auswahlsatz von Helly besitzt jede gleichmäßig beschränkte Folge von Verteilungsfunktionen eine vage konvergente Teilfolge.

Satz von Prochorow

Der Satz von Prochorow lässt sich speziell für (gleichmäßig beschränkte) Familien von Verteilungsfunktionen formulieren. Er besagt, dass eine Familie von Verteilungsfunktionen genau dann straff ist, wenn jede Folge aus dieser Familie eine schwach konvergente Teilfolge besitzt.

Einzelnachweise

  1. Kusolitsch: Maß- und Wahrscheinlichkeitstheorie. 2014, S. 287.

Literatur

  • Jürgen Elstrodt: Maß- und Integrationstheorie. 6., korrigierte Auflage. Springer-Verlag, Berlin/ Heidelberg 2009, ISBN 978-3-540-89727-9, doi:10.1007/978-3-540-89728-6.
  • Achim Klenke: Wahrscheinlichkeitstheorie. 3. Auflage. Springer-Verlag, Berlin/ Heidelberg 2013, ISBN 978-3-642-36017-6, doi:10.1007/978-3-642-36018-3.
  • Norbert Kusolitsch: Maß- und Wahrscheinlichkeitstheorie. Eine Einführung. 2., überarbeitete und erweiterte Auflage. Springer-Verlag, Berlin/ Heidelberg 2014, ISBN 978-3-642-45386-1, doi:10.1007/978-3-642-45387-8.
  • Klaus D. Schmidt: Maß und Wahrscheinlichkeit. 2., durchgesehene Auflage. Springer-Verlag, Heidelberg/ Dordrecht/ London/ New York 2011, ISBN 978-3-642-21025-9, doi:10.1007/978-3-642-21026-6.