Satz von Helly-Bray
Der Satz von Helly-Bray ist ein Satz der Maßtheorie, einem Teilgebiet der Mathematik, das sich mit der Untersuchung von abstrahierten Volumenbegriffen beschäftigt. Diese finden beispielsweise Verwendung in der Stochastik oder der Integrationstheorie. Der Satz von Helly-Bray knüpft eine Verbindung von der vagen Konvergenz von Maßen zur vagen Konvergenz von Verteilungsfunktionen und der schwachen Konvergenz von Maßen zur schwachen Konvergenz von Verteilungsfunktionen. Somit ermöglicht er es, das Konvergenzverhalten einer Folge von Maßen auf das (punktweise) Konvergenzverhalten der Verteilungsfunktionen zurückzuführen. Bekanntestes Beispiel hierfür ist die Konvergenz in Verteilung in der Stochastik, denn dabei handelt es sich um die schwache Konvergenz von Wahrscheinlichkeitsmaßen und diese kann auf die Konvergenz der Verteilungsfunktionen (im Sinne der Stochastik) zurückgeführt werden.
Der Satz ist nach Eduard Helly und Hubert Evelyn Bray benannt. Helly bewies den Satz bereits 1912 in seiner Arbeit Über lineare Funktionaloperatoren, während Bray ihn, vermutlich ohne davon zu wissen, 1919 in seiner Arbeit Elementary properties of the Stieltjes integral veröffentlichte.[1]
Rahmenbedingungen
Auf den reellen Zahlen definiert jedes endliche Maß durch
eine sogenannte Verteilungsfunktion, die monoton wachsend, rechtsseitig stetig und beschränkt ist. Umgekehrt definiert jede monoton wachsende rechtsseitig stetige beschränkte Funktion durch
ein Maß, das Lebesgue-Stieltjes-Maß. Die Zuordnung der Verteilungsfunktionen zu den Maßen ist bis auf eine Konstante eindeutig, das heißt und erzeugen dasselbe Maß. Nun stellt sich die Frage, wie sich Eigenschaften der Maße in den Verteilungsfunktionen widerspiegeln und umgekehrt. Der Satz von Helly-Bray trifft eine Aussage darüber, wann aus der Konvergenz der Verteilungsfunktionen auf die Konvergenz der Maße geschlossen werden kann.
Aussage
Gegeben seien Verteilungsfunktionen . Dann gilt:
- Konvergiert die Folge schwach gegen , so gilt für jede beschränkte stetige Funktion
- Fehler beim Parsen (Konvertierungsfehler. Der Server („https://wikimedia.org/api/rest_“) hat berichtet: „Cannot get mml. Server problem.“): {\displaystyle \lim _{n\to \infty }\int _{\mathbb {R} }g\mathrm {d} F_{n}=\int _{\mathbb {R} }g\mathrm {d} F} .
- Konvergiert die Folge vage gegen , so gilt für jede stetige Funktion mit kompaktem Träger
- .
Folgerungen
Allgemein
Eine direkte Schlussfolgerung aus den obigen Aussagen ist, dass aus der schwachen (vagen) Konvergenz der Verteilungsfunktionen gegen Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle F } die schwache (vage) Konvergenz der Maße Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle (\mu_{F_n})_{n \in \N} } gegen Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \mu_F } folgt, da das Stieltjes-Integral bezüglich Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle F_n } genau dem Integral bezüglich entspricht.
Schließlich lässt sich noch die Umkehrung zeigen: konvergieren die endlichen Maße Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle (\mu_n)_{n \in \N} } schwach/vage, so existiert eine reelle Folge Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle (c_n)_{n \in \N} } , so dass Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle (F_n-c_n)_{n \in \N} } schwach/vage konvergiert.
Für Wahrscheinlichkeitsmaße
Sind die Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle (\mu_n)_{n \in \N} } alle Wahrscheinlichkeitsmaße, so kann man die Folge konstant gleich Null setzen, da die Verteilungsfunktionen im Sinne der Wahrscheinlichkeitstheorie durch die Bedingungen und eindeutig festgelegt sind. Somit konvergieren die Wahrscheinlichkeitsmaße genau dann schwach, wenn die Verteilungsfunktionen schwach konvergieren.
In diesem Fall ist Vorsicht geboten, da für Wahrscheinlichkeitsmaße die schwache und die vage Konvergenz von Verteilungsfunktionen zusammenfallen und die Begriffe in der Literatur nicht immer eindeutig verwendet werden.
Einzelnachweise
- ↑ Elstrodt: Maß- und Integrationstheorie. 2009, S. 392.
Literatur
- Jürgen Elstrodt: Maß- und Integrationstheorie. 6., korrigierte Auflage. Springer-Verlag, Berlin Heidelberg 2009, ISBN 978-3-540-89727-9, S. 387–392, doi:10.1007/978-3-540-89728-6.
- Klaus D. Schmidt: Maß und Wahrscheinlichkeit. 2., durchgesehene Auflage. Springer-Verlag, Heidelberg Dordrecht London New York 2011, ISBN 978-3-642-21025-9, S. 396, doi:10.1007/978-3-642-21026-6.