Watt-Waage

aus Wikipedia, der freien Enzyklopädie

Die Watt-Waage, seit 2017 auch Kibble-Waage (zu Ehren ihres Erfinders Bryan Kibble), ist ein experimenteller Aufbau, mit dem eine Relation zwischen dem Planckschen Wirkungsquantum und der Maßeinheit Kilogramm erzeugt werden kann. Mit festgelegtem Kilogramm konnte somit das Plancksche Wirkungsquantum bestimmt werden und seit dem 20. Mai 2019, als dem Planckschen Wirkungsquantum ein fester Zahlenwert zugewiesen wurde, kann damit die Maßeinheit Kilogramm realisiert werden.

Hintergrund

Das Kilogramm war die einzige SI-Basiseinheit, die nicht mit Hilfe einer Messvorschrift realisiert werden konnte. Es war seit 1889 über das in Paris aufbewahrte Urkilogramm definiert. Vergleichsmessungen zwischen diesem Prototyp und nationalen Kopien zeigen eine Auseinanderentwicklung von etwa 50 ppb über 100 Jahre.[1] Seit Jahrzehnten bemühen sich deshalb Physiker, die Reproduzierbarkeit von Experimenten, mit denen die Masseneinheit auf Naturkonstanten zurückgeführt werden kann, auf unter 10 ppb zu verbessern. Ein Ansatz ist die 1975 von B. P. Kibble am britischen National Physical Laboratory (NPL) vorgeschlagene Watt-Waage. Am 20. Mai 2019 wurde das Urkilogramm aus dem SI-System entfernt und stattdessen ein Zahlenwert für das Plancksche Wirkungsquantum festgelegt.[2]

Messprinzip

Die Watt-Waage am NIST

An einer Spule in einem Magnetfeld werden nacheinander zwei Experimente durchgeführt, eine Wägung und eine Bewegung. Bei der Wägung wird der Strom gemessen, der für die Kompensation der Gewichtskraft der Masse nötig ist, bei der Bewegung wird die Induktionsspannung gemessen, die durch eine vertikale Bewegung mit der Geschwindigkeit erzeugt wird:

Darin ist die Schwerebeschleunigung, die durch Fallexperimente sehr genau gemessen, also auf die durch Naturkonstanten festgelegten Basiseinheiten Meter und Sekunde zurückgeführt werden kann.

Die interferometrisch kontrollierte Bewegung mit der Geschwindigkeit induziert eine Spannung

die stromlos gemessen wird. Die Proportionalitätskonstante mit magnetischer Induktion und Länge des Spulendrahtes kürzt sich bei der Multiplikation der Gleichungen heraus:

Auf den beiden Seiten dieser Gleichung steht eine Leistung mit der Einheit Watt. Dies gab dem Verfahren den Namen. Eine direkte elektrische Leistungsmessung wäre durch die Joulesche Wärme verfälscht. Um ein Messergebnis für die Masse zu erhalten, wird diese Gleichung noch umgeformt zu:

Darin wird die Spannung als -Faches einer Josephson-Spannung

gemessen, die über die Mikrowellenfrequenz präzise einstellbar ist. ist das Plancksche Wirkungsquantum und die Elementarladung.

Der Strom wird mittels des Quanten-Hall-Effektes ebenfalls über eine Spannung bestimmt:

Darin sind und weitere dimensionslose Faktoren und ist die Von-Klitzing-Konstante.

Von den in beiden Quanteneffekten auftretenden Naturkonstanten und kürzt sich Letztere heraus:

Experimentelles

Die Messung findet in einem sehr komplexen Aufbau im Hochvakuum statt. Störende Magnetfelder müssen auch auf größere Entfernungen ausgeschlossen werden, ebenso Verformungen und andere als vertikale Bewegungen der Spule.

Am Internationalen Büro für Maß und Gewicht (BIPM) wird momentan ein Exemplar mit supraleitender Spule aufgebaut, das eine gleichzeitige Messung von Strom und Spannung ohne Messfehler durch einen Spulenwiderstand erlaubt. Dadurch sinken die Anforderungen an die Konstanz von Magnetfeld und Spulengeometrie.

Für die Testmasse in der Watt-Waage werden verschiedene Legierungen diskutiert, beispielsweise eine Gold-Platin-Legierung. Das Material muss nicht nur, wie für Masse-Maßverkörperungen üblich, abrieb- und korrosionsfest sein, sondern auch eine möglichst geringe magnetische Suszeptibilität (Magnetisierbarkeit) aufweisen.[3]

Alternative Verfahren

Ein weiteres Verfahren, mit dem das Kilogramm unter Verwendung der Planck-Konstante realisiert werden kann, ist die XRCD-Methode. In diesem Verfahren wird das Kilogramm als Vielfaches der Atommasse eines bestimmten Nuklids realisiert. Zur Anbindung an wägbare Massen muss eine große Anzahl dieser Atome genau bestimmt werden. Der Ansatz des Experiments ist die indirekte Bestimmung der Anzahl aus dem Volumen und aus der Gitterkonstanten einer einkristallinen, isotopenreinen Siliziumkugel. Dabei wird das Volumen interferometrisch und die Gitterkonstante durch Röntgenbeugung ermittelt. Die erste dieser von der PTB in Braunschweig für den Verkauf hergestellten Kugeln hat Anfang 2018 Taiwan für eine Million Euro gekauft.[4]

Einzelnachweise

  1. Holger Dambeck: Das rätselhafte Schrumpfen des Urkilogramms. In: Der Spiegel. 13. September 2007.
  2. Metrologie: Maßeinheiten sind bald in Natur gemeißelt. Abgerufen am 20. Mai 2019.
  3. Z. Silvestri u. a.: Volume magnetic susceptibility of gold–platinum alloys: possible materials to make mass standards for the watt balance experiment. Metrologia, 40/2003, S. 172–176.
  4. Ruth Hutsteiner: Neues Urkilo für eine Million Euro. Bei: Science.ORF.at. 28. März 2018, abgerufen am 28. März 2018.

Literatur

  • M. Stock: The watt balance: determination of the Planck constant and redefinition of the kilogram. Phil. Trans. R. Soc. A 369 (2011), S. 3936–3953.
  • R. L. Steiner u. a.: Towards an electronic kilogram: an improved measurement of the Planck constant and electron mass. Metrologia, 42/2005, S. 431–441.
  • R. L. Steiner u. a.: Uncertainty Improvements of the NIST Electronic Kilogram. IEEE Trans. Instrum. Meas. 56 (2007), S. 592–596.
  • I. A. Robinson u. a.: An initial measurement of Planck’s constant using the NPL Mark II watt balance. Metrologia, 44/2007, S. 427–440.
  • A. G. Steele u. a.: Reconciling Planck constant determinations via watt balance and enriched-silicon measurements at NRC Canada. Metrologia 49 (2012), S. L8–L10.
  • A. Eichenberger u. a.: Determination of the Planck constant with the METAS watt balance. Metrologia 48 (2011), S. 133–141.
  • P. Pinot u. a.: Theoretical analysis for the design of the French watt balance experiment force comparator. Rev Sci Instrum., 78/2007, PMID 17902975.
  • A. Picard u. a.: The BIPM watt balance: Improvements and developments. 2010 Conference on Precision Electromagnetic Measurements (CPEM), Daejeon, 2011, doi:10.1109/CPEM.2010.5543305.

Weblinks

Commons: Watt-Waage – Sammlung von Bildern, Videos und Audiodateien