Homöomorphismus

aus Wikipedia, der freien Enzyklopädie
Dies ist die aktuelle Version dieser Seite, zuletzt bearbeitet am 16. Januar 2022 um 00:48 Uhr durch imported>ZabesBot(3623229) (Bot: Räume alte Interwikilinks auf).
(Unterschied) ← Nächstältere Version | Aktuelle Version (Unterschied) | Nächstjüngere Version → (Unterschied)
Beispiel: Visualisierung eines Homöomorphismus zwischen Cantor-Räumen. Homöomorphismus vom in den . Die Farben deuten an, wie Teilräume von Folgen mit einem gemeinsamen Präfix aufeinander abgebildet werden.

Ein Homöomorphismus (zuweilen fälschlicherweise auch Homeomorphismus in Anlehnung an den englischen Begriff

homeomorphism

, keinesfalls aber zu verwechseln mit Homomorphismus) ist ein zentraler Begriff im mathematischen Teilgebiet Topologie. Er bezeichnet eine bijektive, stetige Abbildung zwischen zwei topologischen Räumen, deren Umkehrabbildung ebenfalls stetig ist. Die Stetigkeitseigenschaft hängt von den betrachteten topologischen Räumen ab.

Zwei topologische Räume heißen homöomorph (auch topologisch äquivalent), wenn sie durch einen Homöomorphismus (auch topologische Abbildung oder topologischer Isomorphismus) ineinander überführt werden können; sie liegen in derselben Homöomorphieklasse und sind, unter topologischen Gesichtspunkten, gleichartig. Die Topologie untersucht Eigenschaften, die unter Homöomorphismen invariant sind.

Anschaulich kann man sich einen Homöomorphismus als Dehnen, Stauchen, Verbiegen, Verzerren, Verdrillen eines Gegenstands vorstellen; Zerschneiden ist nur erlaubt, wenn man die Teile später genau an der Schnittfläche wieder zusammenfügt.

Definition

und seien topologische Räume. Eine Abbildung ist genau dann ein Homöomorphismus, wenn gilt:

  •  ist bijektiv
  •  ist stetig
  • die Umkehrfunktion ist ebenfalls stetig.

Homöomorphismen lassen sich wie folgt charakterisieren: Sind und topologische Räume, so sind für eine bijektive, stetige Abbildung äquivalent:

Beispiele

  • Jede offene Kreisscheibe (mit positivem Radius) ist homöomorph zu jedem offenen Quadrat (mit positiver Seitenlänge) in der euklidischen Ebene . Eine Kreisscheibe lässt sich also anschaulich gesehen durch Verbiegen und Verzerren, ohne Zerschneiden, in ein Quadrat überführen, und umgekehrt.
  • Das offene Intervall ist homöomorph zum Raum aller reellen Zahlen. Jedes offene Intervall lässt sich ohne Weiteres ins Unendliche verzerren. Ein Homöomorphismus, der dies für Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \left]0,1\right[} vermittelt, ist zum Beispiel
Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \begin{align} f\colon \left]0,1\right[ &\to \mathbb{R} \\ x & \mapsto \tan \left(\left(x- \tfrac{1}{2}\right)\cdot \pi \right) \end{align}}
  • Der Produktraum Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \mathbb{S}^1 \times \mathbb{S}^1 } des Einheitskreises mit sich selbst ist homöomorph zum zweidimensionalen Torus, also zu der Form eines Fahrradschlauchs. Für einen Homöomorphismus, der dies vermittelt, wird zunächst einem Punkt auf dem ersten Kreis eine Stelle auf der Felge des Fahrradreifens zugeordnet, dann einem Punkt auf dem zweiten Kreis eine Stelle auf dem an der Felgenstelle anliegenden Reifenquerschnitt.

Bedeutung der Umkehrbarkeit

Die dritte Bedingung der Stetigkeit der Umkehrfunktion Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle f^{-1}} ist unerlässlich. Man betrachte zum Beispiel die Funktion

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \begin{align} f \colon \left[0, 2\pi\right[ &\to \mathbb{S}^1\\ x &\mapsto \left(\cos (x), \sin (x)\right) \end{align}}

Diese Funktion ist stetig und bijektiv, aber kein Homöomorphismus. Die Umkehrfunktion Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle f^{-1}} bildet Punkte nahe bei Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle (1,0)} auf weit voneinander entfernte Zahlen in der Nähe von Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle 0} und Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle 2\pi} ab; anschaulich würde der Kreis an der Stelle Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle (1,0)} zerrissen und dann flach abgerollt zum Intervall.

Beschränkt man sich auf bestimmte Arten topologischer Räume, dann folgt die Stetigkeit der Umkehrabbildung einer Bijektion Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle f}  bereits aus der Stetigkeit von Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle f} . Zum Beispiel ist eine stetige Bijektion zwischen kompakten Hausdorff-Räumen bereits ein Homöomorphismus. Zum Beweis dieser Aussage dient der folgende

Satz
Wenn Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle X} ein kompakter und Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle Y} ein hausdorffscher topologischer Raum ist, dann ist jede stetige bijektive Abbildung Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle f \colon X \to Y} ein Homöomorphismus.
Beweis
Sei Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle g\colon Y \to X} die Umkehrabbildung und Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle A \subseteq X} abgeschlossen, es ist zu zeigen, dass Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle g^{-1}(A)} abgeschlossen ist. Als abgeschlossene Teilmenge eines Kompaktums ist Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle A} kompakt. Da stetige Bilder kompakter Mengen wieder kompakt sind, ist Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle g^{-1}(A)=f(A)} kompakt. Da kompakte Mengen in Hausdorffräumen abgeschlossen sind, ist Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle g^{-1}(A)} abgeschlossen, was den Beweis beendet.

Eigenschaften

Wenn zwei topologische Räume homöomorph sind haben sie exakt dieselben topologischen Eigenschaften, das sind Eigenschaften, die sich ausschließlich durch die unterliegende Menge und den darauf definierten offenen bzw. abgeschlossenen Mengen ausdrücken lassen. Das liegt daran, dass ein Homöomorphismus definitionsgemäß eine Bijektion zwischen den unterliegenden Mengen und zwischen den Systemen offener Mengen ist. Beispiele solcher Eigenschaften sind Kompaktheit, Zusammenhang, Trennungseigenschaften und viele mehr. Der Nachweis, dass es sich um eine topologische Eigenschaft handelt, kann mitunter schwierig sein, insbesondere dann, wenn die ursprüngliche Definition zusätzliche Strukturen verwendet. Ein Beispiel einer solchen Eigenschaft ist Metrisierbarkeit, hier zeigt der Satz von Bing-Nagata-Smirnow, dass es sich um eine topologische Eigenschaft handelt. Eberlein-Kompaktheit ist ein weiteres nicht-triviales Beispiel.

Es gibt aber auch Eigenschaften gewisser Räume, die bei Homöomorphismen nicht erhalten bleiben, zum Beispiel die Vollständigkeit metrischer Räume. Die Ebene und die offene Kreisscheibe mit der Standardmetrik sind homöomorph bzgl. der durch die Metrik definierten Topologien, erstere ist vollständig, letztere hingegen nicht. Vollständigkeit ist daher keine topologische Eigenschaft, sie bleibt bei Homöomorphismen nicht erhalten.

Lokaler Homöomorphismus

Eine stetige Abbildung Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle f} zwischen topologischen Räumen Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle X, Y} heißt lokaler Homöomorphismus, falls für jeden Punkt Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle a \in X} eine offene Umgebung Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle U \subseteq X} von Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle a} existiert, so dass

  • Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle f(U) \subseteq Y} eine offene Umgebung von Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle f(a)} bildet und
  • Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle f|_U\colon U \rightarrow f(U)} ein Homöomorphismus ist.

Jeder Homöomorphismus ist ebenfalls ein lokaler Homöomorphismus, die Umkehrung gilt aber nicht, wie folgendes Beispiel zeigt: Die Abbildung Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle f\colon \mathbb{C}\setminus\left\{0\right\} \rightarrow \mathbb{C}, \, x \mapsto x^2} ist nicht bijektiv, aber ein lokaler Homöomorphismus, da die Ableitung von Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle f} nirgends verschwindet.

Ist Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle f} außerdem surjektiv, so spricht man auch von einer lokal topologischen Abbildung.

Siehe auch