Invariant Random Subgroup

aus Wikipedia, der freien Enzyklopädie
Dies ist die aktuelle Version dieser Seite, zuletzt bearbeitet am 19. Februar 2022 um 21:27 Uhr durch imported>Aka(568) (Halbgeviertstrich, Kleinkram).
(Unterschied) ← Nächstältere Version | Aktuelle Version (Unterschied) | Nächstjüngere Version → (Unterschied)

Invariant Random Subgroup (IRS) ist ein Begriff aus der Mathematik.

Definition

Sei eine topologische Gruppe, der Raum der abgeschlossenen Untergruppen mit der Chabauty-Topologie. Eine invariant random subgroup ist ein Borelsches Wahrscheinlichkeitsmaß auf , dass unter der Konjugationswirkung von auf invariant ist.

Der Raum aller solchen Maße mit der schwachen Topologie wird mit bezeichnet.

Beispiele

  • Wenn ein Normalteiler ist, ist das Dirac-Maß eine IRS.
  • Wenn ein Gitter ist, erhält man mittels der Abbildung durch Push-Forward des auf auf Volumen normierten Haar-Maßes eine IRS auf , die mit bezeichnet wird.

Zusammenhang mit Benjamini-Schramm-Konvergenz

Sei eine zusammenhängende, halbeinfache Lie-Gruppe ohne kompakten Faktor und mit trivialem Zentrum, sei eine maximal kompakte Untergruppe und der symmetrische Raum. Dann sind für eine Folge von Gittern äquivalent:

  • Die Folge BS-konvergiert gegen .
  • Die Folge konvergiert in gegen das Dirac-Maß auf der trivialen Untergruppe .

IRS in Lie-Gruppen

Sei eine nicht-kompakte, einfache Lie-Gruppe mit trivialem Zentrum und . Dann folgt aus dem Satz von Nevo-Stuck-Zimmer, dass alle IRS entweder für ein Gitter oder oder sind.

Dagegen gibt es für nicht-kompakte, einfache Lie-Gruppen mit trivialem Zentrum und zahlreiche „exotische“ IRS.

Literatur

  • Clara Löh: Ergodic Theoretic Methods in Group Homology. SpringerBriefs in Mathematics. Cham: Springer, 2020
  • Abert, Bergeron, Biringer, Gelander, Nikolov, Raimbault, Samet: On the growth of L2-invariants for sequences of lattices in Lie groups. Ann. Math. (2) 185, No. 3, 711–790 (2017).