Übergangskern

aus Wikipedia, der freien Enzyklopädie

Als Übergangskern bezeichnet man spezielle Abbildungen zwischen Messräumen in der Wahrscheinlichkeitstheorie, die im ersten Argument messbar sind und im zweiten Argument ein Maß liefern. Spezialfälle von Übergangskernen sind die sogenannten stochastischen Kerne, die auch Markow-Kerne oder Wahrscheinlichkeitskerne genannt werden. Bei ihnen ist das Maß immer ein Wahrscheinlichkeitsmaß. Ist das Maß immer ein Sub-Wahrscheinlichkeitsmaß, so spricht man auch von Sub-Markow-Kernen oder substochastischen Kernen.

Insbesondere die Markow-Kerne spielen eine wichtige Rolle in der Wahrscheinlichkeitstheorie wie beispielsweise bei der Formulierung der regulären bedingten Verteilung oder der Theorie der stochastischen Prozesse. Hier bilden sie im Speziellen die Basis für die Formulierung der Übergangswahrscheinlichkeiten von Markow-Ketten oder Existenzaussagen wie den Satz von Ionescu-Tulcea.

Definition

Gegeben seien zwei Messräume und . Eine Abbildung heißt ein Übergangskern von nach , wenn gilt:

  • Für jedes ist ein Maß auf .
  • Für jedes ist eine -messbare Funktion.

Ist das Maß für alle ein σ-endliches Maß, so spricht man von einem σ-endlichen Übergangskern, ist es stets endlich, so spricht man von einem endlichen Übergangskern. Ist das Maß für alle ein Wahrscheinlichkeitsmaß, so nennt man einen stochastischen Kern oder Markow-Kern. Ist das Maß für alle ein Sub-Wahrscheinlichkeitsmaß, so heißt ein substochastischer Kern oder sub-Markow'scher-Kern.

Bemerkung: Bei manchen Definitionen werden die Argumente von in umgekehrter Reihenfolge geschrieben, oder auch , in Anlehnung an bedingte Wahrscheinlichkeiten.

Elementare Beispiele

  • Die Poisson-Verteilung ist ein Markow-Kern von nach . Denn die Funktion mit Parameter ist stetig in und daher messbar. Des Weiteren ist für jedes die Poisson-Verteilung mit Parameter eine Wahrscheinlichkeitsverteilung. Also handelt es sich um einen Übergangskern.
  • Die stochastische Matrix
kann als ein Markow-Kern von nach aufgefasst werden. Denn für jedes ist die -te Zeile ein Wahrscheinlichkeitsvektor und damit ein Wahrscheinlichkeitsmaß auf . Außerdem ist sie eine Abbildung zwischen endlichen Mengen versehen mit der Potenzmenge und damit messbar.

Eigenschaften

Maße durch Kerne

Jedem Maß auf ordnet durch

ein Maß auf zu. Dieses Maß wird üblicherweise mit bezeichnet. Ist ein Wahrscheinlichkeitsmaß, gilt also , dann ist auch , das heißt ist ebenfalls ein Wahrscheinlichkeitsmaß.

Im Fall wird ein Maß , für das gilt, stationäres Maß genannt. Ein stationäres Wahrscheinlichkeitsmaß heißt auch stationäre Verteilung.

Messbare Funktionen durch Kerne

Jeder nichtnegativen messbaren Funktion ordnet durch

eine nichtnegative messbare Funktion zu. Diese Funktion wird üblicherweise mit bezeichnet. Mit der Kurzschreibweise gilt für alle Maße auf und alle nichtnegativen messbaren Funktionen die Gleichung .

Diskreter Fall

Im diskreten Fall, wo und endliche oder abzählbare Mengen sind, genügt es die Wahrscheinlichkeiten anzugeben, mit denen man vom Zustand in den Zustand gelangt. Mit den Bezeichnungen des allgemeinen Falls gilt dann . Diese Wahrscheinlichkeiten bilden eine Übergangsmatrix , die die Eigenschaft hat, dass alle Elemente zwischen und liegen und dass die Zeilensummen den Wert haben. Eine solche Matrix wird als stochastische Matrix bezeichnet. Sie ordnet jeder Wahrscheinlichkeitsverteilung auf mit einer Zähldichte die Zähldichte

einer Wahrscheinlichkeitsverteilung auf zu, das heißt wird mit der üblichen Matrixmultiplikation berechnet, wobei Zähldichten als Zeilenvektoren aufgefasst werden.

Ist eine nichtnegative Funktion, aufgefasst als Spaltenvektor mit nichtnegativen Einträgen, dann gilt

.

Das heißt, im diskreten Fall wird auch , aufgefasst als Spaltenvektor mit Indizes in , mit der üblichen Matrixmultiplikation berechnet.

Bemerkung: Bei manchen Definitionen werden Zeilen und Spalten der Matrix umgekehrt verwendet.

Operationen von Übergangskernen

Verkettung

Sind drei Messräume gegeben sowie zwei substochastische Kerne von nach und von nach , so ist die Verkettung der Kerne und eine Abbildung

definiert durch

.

Die Verkettung ist dann ein substochastischer Kern von nach . Sind und stochastisch, dann ist auch stochastisch.

Produkte

Gegeben seien die Maßräume und und zwei endliche Übergangskerne von nach und von nach . Dann definiert man das Produkt der Kerne und

als

.

Das Produkt ist dann ein σ-endlicher Übergangskern von nach . Sind beide Kerne stochastisch (bzw. substochastisch), so ist auch das Produkt der Kerne stochastisch (bzw. substochastisch).

Ist nur ein Kern von nach , so fasst man den Kern als Kern von auf, der unabhängig von der ersten Komponente ist.

Weitere Beispiele

  • Ist ein Wahrscheinlichkeitsmaß auf , dann ist eine (von unabhängige) Übergangswahrscheinlichkeit.
  • Für und dem Diracmaß im Punkt wird durch eine Übergangswahrscheinlichkeit von nach definiert, die auch Einheitskern genannt wird. Es gilt für alle Maße auf und für alle nichtnegativen messbaren Funktionen .
  • Sind eine nichtnegative und bezüglich der Produkt-σ-Algebra messbare Funktion und ein Maß auf mit für alle , dann wird durch
eine Übergangswahrscheinlichkeit definiert. Hier ist also das Wahrscheinlichkeitsmaß auf mit der -Wahrscheinlichkeitsdichte .
  • Sei fest und die Binomialverteilung mit Parametern und , aufgefasst als Wahrscheinlichkeitsmaß auf . Dann wird durch
eine Übergangswahrscheinlichkeit von nach definiert. Ist beispielsweise eine Betaverteilung auf , dann ist die zugehörige Beta-Binomialverteilung auf .

Darstellung als Daniell-stetige Abbildungen und Komposition

Jedem Markow-Kern von nach ist auf dem Raum der numerischen, nichtnegativen Funktionen über

eine Abbildung mit folgenden Eigenschaften zugeordnet:

  1. für jedes (Positivität),
  2. für jede monoton wachsende Folge in (Daniell-Stetigkeit, nach Percy John Daniell),
  3. (Additivität).

Zu jeder Abbildung mit diesen Eigenschaften gibt es wiederum genau einen Kern, für den die so gebildete Abbildung darstellt.

Aus der Komposition dieser Abbildungen kann eine Definition für die Komposition der zugehörigen Kerne hergeleitet werden: Durch

ist ein stochastischer Kern von nach definiert, der als Komposition von und bezeichnet wird. Im diskreten Fall entspricht der Multiplikation der beiden Übergangsmatrizen.

Spezielle Anwendungen

Markow-Kerne finden breite Anwendung bei der Modellbildung etwa unter Zuhilfenahme von Markow- und Hidden-Markow-Modellen. In der Quantenphysik werden oft Übergangswahrscheinlichkeiten zwischen quantenmechanischen Zuständen untersucht. Außerdem werden Markow-Kerne in der mathematischen Statistik verwendet, um im Rahmen eines allgemeinen statistischen Entscheidungsproblems eine Entscheidungsfunktion zu definieren, die jedem Ausgang eines Experiments eine Entscheidung zuordnet. Dabei kann die Entscheidung sowohl eine Parameterschätzung als auch die Wahl eines Konfidenzintervalls oder die Entscheidung für oder gegen eine Hypothese sein.

Literatur

  • Achim Klenke: Wahrscheinlichkeitstheorie. 3. Auflage. Springer-Verlag, Berlin Heidelberg 2013, ISBN 978-3-642-36017-6, doi:10.1007/978-3-642-36018-3.
  • Heinz Bauer: Wahrscheinlichkeitstheorie. De Gruyter, Berlin 2002, ISBN 3-11-017236-4.
  • Erhan Çınlar: Probability and Stochastics. Springer, New York u. a. 2011, ISBN 978-0-387-87858-4.