Bellsche Zahl
Die Bellsche Zahl, Bellzahl oder Exponentialzahl ist die Anzahl der Partitionen einer -elementigen Menge. Benannt ist sie nach dem Mathematiker Eric Temple Bell. Die Folge beginnt mit
Bedeutung
Partitionen
Eine Partition einer Menge beinhaltet paarweise disjunkte Teilmengen von , sodass jedes Element aus in genau einer Menge aus vorkommt. Für alle natürlichen Zahlen einschließlich der Null bezeichnet nun die Bellsche Zahl die Anzahl der möglichen verschiedenen Partitionen einer Menge mit der Mächtigkeit , wobei die Menge aller möglichen Partitionen darstellt. Formal:
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \forall P \in Q: \bigcup_{x \in P}x=M}
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \forall P \in Q ~ \forall a,b \in P ~ (a\neq b \Longrightarrow a \cap b = \emptyset)}
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle B_n := \left | Q \right |}
Die Bellsche Zahl mit dem Index 0, , – also die Anzahl der Partitionen der leeren Menge Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \emptyset} – ist 1, weil die einzige Partition der leeren Menge wieder die leere Menge selbst ist. Dies ist so, weil alle Aussagen mit dem Allquantor über die Elemente der leeren Menge wahr sind (siehe leere Menge).
Multiplikative Partitionen
Sei Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle N} eine quadratfreie Zahl, so ist , wobei die Funktion zur Bestimmung der Anzahl der einzigartigen Primfaktoren ist. Dann ist Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle B_n} wiederum die Anzahl der unterschiedlichen multiplikativen Partitionen von Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle N} .
Sei zum Beispiel Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle N=30} , so ist Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle n=\omega(30)=3} (da 30 aus den drei Primfaktoren 2, 3 und 5 besteht) und ist damit die Anzahl der multiplikativen Partitionen. Diese lauten:
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle 30\times 1=2\times 15=3\times 10=5\times 6=2\times 3\times 5}
Eigenschaften
Definition
Für die Bellschen Zahlen ist diese Rekursionsformel gültig:
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle B_{n+1} = \sum_{k=0}^{n}{{n \choose k}B_k}}
Die Dobińskische Formel (Dobiński 1877)[1] dient zur Definition der Bellschen Zahlen für alle Zahlen n ≥ 0:
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle B_n = \frac{1}{e} \sum_{k=0}^{\infty} \frac{k^n}{k!}}
Diese Formel wurde nach dem polnischen Mathematiker Donald Gabriel Dobiński[2] benannt.
Die Richtigkeit dieser Formel kann durch einen Induktionsbeweis nachgewiesen werden:
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle f(n) = \frac{1}{e} \sum_{k=0}^{\infty} \frac{k^n}{k!}}
Für n ≥ 0 gilt:
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle f(n+1) = \frac{1}{e} \sum_{k=0}^{\infty} \frac{k^{n+1}}{k!} = \frac{1}{e} \sum_{k=1}^{\infty} \frac{k^{n+1}}{k!} = \frac{1}{e} \sum_{k=0}^{\infty} \frac{(k+1)^{n+1}}{(k+1)!} = \frac{1}{e} \sum_{k=0}^{\infty} \frac{(k+1)^{n}}{k!} =}
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle = \frac{1}{e} \sum_{k=0}^{\infty} \frac{1}{k!} \sum_{m=0}^{n} \binom{n}{m}k^{m} = \sum_{m=0}^{n} \binom{n}{m} \frac{1}{e} \sum_{k=0}^{\infty} \frac{k^{m}}{k!} = \sum_{m=0}^{n} \binom{n}{m} f(m) }
Außerdem gilt:
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle f(0) = \frac{1}{e} \sum_{k=0}^{\infty} \frac{1}{k!} = 1}
Wenn gilt:
- und Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle f(0) = 1}
Dann gilt:
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle f(n) = B_{n}}
Somit ist Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle B_n} auch das -te Moment einer Poisson-Verteilung mit Erwartungswert 1.
Erzeugende Funktionen
Die erzeugende Funktion der Bellzahlen ist wie folgt darstellbar:
Die exponentiell erzeugende Funktion lautet so:
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \sum_{n=0}^{\infty} \frac{B_n}{n!}\,x^n = e^{e^x-1}}
Diese Tatsache kann mit der genannten Dobiński-Formel bewiesen werden:
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \sum_{n=0}^{\infty} \frac{B_n}{n!}x^{n} = \sum_{n=0}^{\infty} \frac{1}{n!} \biggl[\frac{1}{e} \sum_{k=0}^{\infty} \frac{k^n}{k!}\biggr]x^{n} = \frac{1}{e} \sum_{n=0}^{\infty} \sum_{k=0}^{\infty} \frac{k^n}{k!n!}x^{n} = \frac{1}{e} \sum_{k=0}^{\infty} \sum_{n=0}^{\infty} \frac{k^n}{k!n!}x^{n} = \frac{1}{e} \sum_{k=0}^{\infty} \frac{1}{k!} \sum_{n=0}^{\infty} \frac{(kx)^n}{n!} = }
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle = \frac{1}{e} \sum_{k=0}^{\infty} \frac{1}{k!}\exp(kx) = \frac{1}{e} \sum_{k=0}^{\infty} \frac{1}{k!}\exp(x)^{k} = \frac{1}{e} \exp[\exp(x)] = \exp[\exp(x)-1] }
Kongruenzsätze
Die Bellschen Zahlen genügen der Kongruenz (Touchard 1933)[3]
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle B_{p^k + n} \equiv k\,B_n + B_{n+1} \ (\text{mod }p)}
für natürliche Zahlen Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle k} und Primzahlen Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle p} , insbesondere und Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle B_p \equiv 2 \ (\text{mod }p)} und, nach Iteration,[4]
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle B_{1 + p + \ldots + p^{p-1} + n} \equiv B_n \ (\text{mod }p).}
Es wird vermutet, dass Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle 1 + p + \dots + p^{p-1}} die kleinste Periode von Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle B_n \ (\text{mod }p)} ist.[5][6] Für Primzahlen Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle p > 2} ist
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle B_{p^{k+1} n} \equiv B_{p^k n + 1} \ (\text{mod }p^{k+1}),}
für Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle p = 2} gilt die Kongruenz Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle (\text{mod }p^k)} .[7]
Da die Stirling-Zahl Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle S(n, k)} zweiter Art die Anzahl der Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle k} -Partitionen einer Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle n} -elementigen Menge ist, gilt
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle B_n = \sum_{k=0}^n S(n,k).}
Asymptotik
Für die Bellzahlen sind verschiedene asymptotische Formeln bekannt, etwa
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle B_n \sim n^{-1/2}\ \bigl(\lambda(n)\bigr)^{n + 1/2}\ e^{\lambda(n) - n - 1}} mit Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \lambda(n) = e^{W(n)} = \frac{n}{W(n)}}
mit der Lambert-W-Funktion Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle W} .
Bellsches Dreieck
Die Bellschen Zahlen lassen sich intuitiv durch das Bellsche Dreieck erzeugen, welches – wie das Pascalsche Dreieck – aus Zahlen besteht und pro Zeile ein Element bzw. eine Spalte mehr besitzt. Das Bellsche Dreieck wird gelegentlich auch Aitkens array (nach Alexander Aitken) oder Peirce-Dreieck (nach Charles Sanders Peirce) genannt.
Es wird nach den folgenden Regeln konstruiert:
- Die erste Zeile hat nur ein Element: Die Eins (1).
- Wenn die -te Zeile (von 1 beginnend) Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle n} Elemente hat, so wird eine neue Zeile erzeugt. Dabei ist die erste Zahl der neuen Zeile gleich der letzten Zahl der letzten Zeile.
- Die Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle k} -te Zahl der Zeile Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle n} (für Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle 1 < k \leq n} ) ist gleich der Summe des Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle (k-1)} -ten Elements derselben Zeile und des -ten Elements der vorherigen Zeile (also jene mit der Nummer Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle n-1} ).
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle B_n} ist nun das Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle n} -te Element aus der Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle n} -ten Zeile.
Die ersten fünf Zeilen, erzeugt nach diesen Regeln, sehen wie folgt aus:
1 1 2 2 3 5 5 7 10 15 15 20 27 37 52
Wegen des zweiten Schritts sind die Bellschen Zahlen sowohl auf der linken als auch auf der rechten Kante des Dreiecks zu sehen, lediglich mit dem Unterschied, dass in der Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle n} -ten Zeile links die Zahl und rechts die Zahl Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle B_n} ist.
Bellsche Primzahlen
Im Jahre 1978 formulierte Martin Gardner die Frage, ob unendlich viele Bellsche Zahlen auch Primzahlen sind. Die ersten Bellschen Primzahlen sind:
Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle n} (Folge A051130 in OEIS) | Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle B_n} (Folge A051131 in OEIS) |
---|---|
2 | 2 |
3 | 5 |
7 | 877 |
13 | 27644437 |
42 | 35742549198872617291353508656626642567 |
55 | 359334085968622831041960188598043661065388726959079837 |
Die nächste Bellsche Primzahl ist Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle B_{2841}} , die etwa Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle 9{,}30740105 \times 10^{6538}} entspricht.[8] Sie ist auch die aktuell größte bekannte Bellsche Primzahl (Stand: 5. August 2018). Im Jahre 2002 zeigte Phil Carmody, dass es sich bei dieser Zahl wahrscheinlich um eine Primzahl (eine sogenannte PRP-Zahl) handelt, sie also entweder tatsächlich eine echte Primzahl oder eine Pseudoprimzahl ist. Nach einer 17-monatigen Berechnung mit Marcel Martins Programm „Primo“, welches mit einem Verfahren mit elliptischen Kurven arbeitet, bewies Ignacio Larrosa Cañestro im Jahre 2004, dass es sich bei Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle B_{2841}} um eine Primzahl handelt. Gleichzeitig schloss er weitere Bellsche Primzahlen bis zu einer Grenze von Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle B_{6000}} aus, welche später von Eric Weisstein auf Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle B_{30447}} angehoben wurde.
Einzelnachweise
- ↑ G. Dobiński: Summirung der Reihe Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \textstyle \sum\frac{n^m}{n!}} für Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle m = 1, 2, 3, 4, 5, \ldots} , Grunert-Archiv 61, 1877, S. 333–336
- ↑ YYiki: G. Dobínski. Abgerufen am 7. September 2021.
- ↑ Jacques Touchard: Propriétés arithmétiques de certains nombres récurrents, Annales de la Société scientifique de Bruxelles A 53, 1933, S. 21–31 (französisch)
- ↑ Marshall Hall: Arithmetic properties of a partition function, Bulletin of the AMS 40, 1934, S. 387 (englisch; nur Abstract)
- ↑ Christian Radoux: Nombres de Bell, modulo p premier, et extensions de degré p de Fp, Comptes rendus hebdomadaires des séances de l’académie des sciences 281 A, 1975, S. 879–882 (französisch)
- ↑ Peter L. Montgomery, Sangil Nahm, Samuel S. Wagstaff: The period of the Bell numbers modulo a prime (PDF-Datei, 168 kB), Mathematics of computation 79, 2010, S. 1793–1800 (englisch)
- ↑ Anne Gertsch, Alain M. Robert: Some congruences concerning the Bell numbers, Bulletin of the Belgian Mathematical Society – Simon Stevin 3, 1996, S. 467–475 (englisch)
- ↑ 93074010508593618333...(6499 other digits)...83885253703080601131 auf Prime Pages. Abgerufen am 5. August 2018.
Literatur
- Eric Temple Bell: Exponential Numbers, The American Mathematical Monthly 41, 1934, S. 411–419
- Jacques Touchard: Nombres exponentiels et nombres de Bernoulli, Canadian Journal of Mathematics 8, 1956, S. 305–320 (französisch)
Weblinks
- Eric W. Weisstein: Bell Number und Dobiński’s Formula. In MathWorld (englisch)
- Bell numbers bei The Wolfram Functions Site (englisch; mit Berechnungsmöglichkeit)
- Set Partitions: Bell Numbers in der NIST Digital Library of Mathematical Functions (englisch)
- Peter Luschny: Set partitions and Bell numbers (englisch). Eine Zusammenfassung von OEIS-Folgen zu den Bellzahlen im OEIS Wiki.