Benutzer:Dirk123456/Baustellenbaustelle 001/Baustelle-3/Baustelle-3.15

aus Wikipedia, der freien Enzyklopädie

| Geobacter sulfurreducens | Geobacter metallireducens | Geobacter | Geobacteraceae | Desulfuromonadales | Deltaproteobacteria | Proteobacteria | Bacteria

Geobacter + G. metallireducens

Effektive Publikation: PMID 8387263; Lovley (1993)[1] - Gattung und Typusart, Stamm GS-15

Wirksammachung: List No. 54, doi:10.1099/00207713-45-3-619; IUMS (1995)[2] - Anerkennung, auch G. sulfurreducens

Geobacter metallireducens Lovley et al. 1995

2019-04-28

PMID 16347658 | PMCID: PMC 202682 (freier Volltext) | Free PMC Article | Lovley & Phillips (1988)[3] - Beschreibung von GS-15

PMID 16348226 | PMCID: PMC 184522 (freier Volltext) | Free PMC Article | Lovley & Lonergan (1990)[4] - Beschreibung von GS-15, Aromaten

PMID 1886521 | PMCID: PMC 372814 (freier Volltext) | Free PMC Article | Lovley (1991)[5] - Review über dissimilatorische Eisen(III)- und Mangan(IV)-Reduktion

PMID 8257100 | doi:10.1146/annurev.mi.47.100193.001403 | Lovley (1993)[6] - Review über Metallreduktion

Caccavo et al. (1994)[7] - Effektive Publikation für G. sulfurreducens

Lovley (1995)[8] - Biologische Sanierung von organischen und metallischen Verunreinigungen durch dissimilatorische Metallreduktion

1995:2000[dp] Geobacter

  • Gaspard et al. (1998)[9] / PMID 9726858 ; Lokalisierung und Solubilisierung der Eisen (III)-Reduktase von Geobacter sulfurreducens
  • Seeliger et al. (1998)[10] / PMID 9658015 ; Ein periplasmatisches und extrazelluläres C-Typ-Cytochrom von Geobacter sulfurreducens fungiert als Eisen (III)-Reduktase und als Elektronenträger für andere Akzeptoren oder Partnerbakterien.
  • Straub et al. (1998)[11] / PMID 9779609 ; Verwendung von biologisch hergestelltem Ferrihydrit zur Isolierung neuer eisenreduzierender Bakterien.
  • Afkar & Fukumori (1999)[12] / PMID 10386369 ; Reinigung und Charakterisierung von Trihämcytochrom c7 aus dem metallreduzierenden Bakterium Geobacter metallireducens.
  • Bhupathiraju et al. (1999)[13] / PMID 10480267 ; Anwendung eines Tetrazoliumfarbstoffs als Indikator für die Lebensfähigkeit von anaeroben Bakterien.
  • Chandler et al. (1999)[14] / PMID 18967673 ; Automatisierte Nukleinsäureisolierung und -reinigung aus Bodenextrakten unter Verwendung erneuerbarer Affinitäts-Mikrosäulen in einem sequentiellen Injektionssystem.
  • Lloyd et al. (1999)[15] / PMID 10601229 ; Das periplasmatische 9,6-Kilodalton-C-Typ-Cytochrom von * Geobacter sulfurreducens ist kein Elektronen-Shuttle zu Eisen(III).
    • Widerlegung einer Hypothese.
  • Lovley & Blunt-Harris (1999)[16] / PMID 10473447 ; Die Rolle von Humin-gebundenem Eisen als Elektronentransfermittel bei der dissimilatorischen Reduktion von Eisen(III).
    • Chinon (oder etwas anderes) wird als Ursache für Elektronentransfer vermutet, zu wenig Eisen(III) um Elektronentransfermittel im Humus zu sein.
  • Lovley et al. (1999)[17] / PMID 11207721 ; Humine als Elektronendonor für die anaerobe Atmung.
    • Unter anderem Geobacter metallireducens und Wolinella succinogenes, Vermutung des vermittelten Elektronentransfers zwischen den Arten, durch (AQDS)/AHQDS.
  • Martínez et al. (1999)[18] / PMID 10550473 ; Ein Häm-C-haltiger Enzymkomplex, der Nitrat- und Nitrit-Reduktase-Aktivität aus dem dissimilatorischen Eisen reduzierenden Bakterium Geobacter metallireducens zeigt.
  • Meckenstock (1999)[19] / PMID 10436924 ; Fermentativer Toluolabbau in anaeroben definierten syntrophischen Kokulturen
    • Geobacter metallireducens kann Toluen mit Eisen(III) als terminalen Elektronenakzeptor abbauen, nicht aber mit Fumarat; in einer Co-Kultur mit Wolinella succinogenes geht das.
  • Meckenstock et al. (1999)[20] / PMID 11207760 ; 13C/ 12C-Isotopenfraktionierung von aromatischen Kohlenwasserstoffen während des mikrobiellen Abbaus.
  • Mikoulinskaia et al. (1999)[21] / PMID 10406941 ; Cytochrom c-abhängige Methacrylat-Reduktase aus Geobacter sulfurreducens AM-1.
  • Rooney-Varga et al. (1999)[22] / PMID 10388703 ; Mikrobielle Gemeinschaften, die mit anaerobem Benzolabbau in einem mit Erdöl kontaminierten Aquifer verbunden sind.
  • Bazylinski et al. (2000)[23] / PMID 11200427 ; N2-abhängiges Wachstum und Nitrogenaseaktivität in den metallmetabolisierenden Bakterien, Geobacter- und Magnetospirillum-Arten.
  • Galushko & Schink (2000)[24] / PMID 11131021 ; Oxidation von Acetat durch Reaktionen des Zitronensäurezyklus durch Geobacter sulfurreducens in Reinkultur und in syntrophischer Kokultur.
  • Lloyd et al. (2000)[25] / PMID 10966385 ; Direkte und Eisen(II)-vermittelte Reduktion von Technetium durch Eisen(III)-reduzierende Bakterien.
  • Snoeyenbos-West et al. (2000)[26] / PMID 10833228 ; Anreicherung von Geobacter-Spezies als Reaktion auf die Stimulierung der Eisen(III)-Reduktion in sandigen Aquifer-Sedimenten.
  • Magnuson et al. (2000)[27] / PMID 10754249 ; Charakterisierung einer membrangebundenen NADH-abhängigen Eisen(3+)-Reduktase aus dem dissimilatorischen Fe(3+)-reduzierenden Bakterium Geobacter sulfurreducens.
  • Nevin & Lovley (2000)[28] / PMID 10788411 ; Mangel an Produktion von elektronenspendenden Verbindungen oder Solubilisierung von Eisen(III) während der Reduktion von unlöslichem Eisen(III)-oxid durch Geobacter metallireducens.
    • Feststellung, dass Geobacter metallireducens kein lösliches Eisen(III) benötigt.

2001 bis 2019 "Geobacter metallireducens"

  • 1. @ /not free/ @ PMID 30928750; Ding et al. (2019)[29] @ Quecksilbermethylierung durch Geobacter metallireducens GS-15 in Gegenwart von Skeletonema costatum. @ Mercury methylation by Geobacter metallireducens GS-15 in the presence of Skeletonema costatum. | | Ding LY, Zhang YY, Zhang LJ, Fang F, He NN, Liang P, Wu SC, Wong MH, Tao HC. | | Sci Total Environ. 2019 Mar 15;671:208-214. doi: 10.1016/j.scitotenv.2019.03.222. [Epub ahead of print]
    • Geobacter metallireducens kann Quecksilber methylieren (meHg) und die Rotalge Skeletonema costatum kann Quecksilber einlagern (Hg(II)-Algae, HgCl2 in den Zellen), beide Prozesse beeinflussen sich.
  • 2. @ /not free/ @ PMID 30674680; Huwiler et al. (2019)[30] @ Ein-Megadalton-Metalloenzym-Komplex in Geobacter metallireducens, das an der Reduktion des Benzolrings über das biologische Redox-Fenster hinaus beteiligt ist. @ One-megadalton metalloenzyme complex in Geobacter metallireducens involved in benzene ring reduction beyond the biological redox window. | | Huwiler SG, Löffler C, Anselmann SEL, Stärk HJ, von Bergen M, Flechsler J, Rachel R, Boll M. | | Proc Natl Acad Sci U S A. 2019 Feb 5;116(6):2259-2264. doi: 10.1073/pnas.1819636116. Epub 2019 Jan 23.
    • high-molecular-mass electron bifurcating machineries: PMC 6369795 [Available on 2019-08-05], "hochmolekulare Elektronenverzweigungsmaschinen", Metalloenzymkomplex arbeitet außerhalb des üblichen Redoxbereichs, die sogenannte Birch-Reduktion wird gekoppelt.
  • 3. @ Free PMC Article @ PMID 30524941; Ferreira et al. (2018)[31] @ Das Triheme Cytochrom PpcF von Geobacter metallireducens zeigt unterscheidbare Redox-Eigenschaften. @ The triheme cytochrome PpcF from Geobacter metallireducens exhibits distinct redox properties. | | Ferreira MR, Dantas JM, Salgueiro CA. | | FEBS Open Bio. 2018 Nov 8;8(12):1897-1910. doi: 10.1002/2211-5463.12505. eCollection 2018 Dec.
    • Geobacter metallireducens könnte für die Metalreduktion besser sein, als G. sulfurreducens. Das Redoxpotential ist etwas „weniger negativ“.
  • 4. @ /not free/ @ PMID 30072494; @ Thermodynamische und funktionelle Charakterisierung des periplasmatischen Trihems Cytochrom PpcA von Geobacter metallireducens. @ Thermodynamic and functional characterization of the periplasmic triheme cytochrome PpcA from Geobacter metallireducens. | | Fernandes TM, Morgado L, Salgueiro CA. | | Biochem J. 2018 Sep 14;475(17):2861-2875. doi: 10.1042/BCJ20180457.
    • siehe auch PMID 30524941;
  • 5. @ /not free/ @ PMID 29486160; @ Biochemische und funktionelle Einblicke in das Trihem Cytochrom PpcA von Geobacter metallireducens. @ Biochemical and functional insights on the triheme cytochrome PpcA from Geobacter metallireducens. | | Portela PC, Fernandes TM, Dantas JM, Ferreira MR, Salgueiro CA. | | Arch Biochem Biophys. 2018 Apr 15;644:8-16. doi: 10.1016/j.abb.2018.02.017. Epub 2018 Feb 25.
    • siehe auch PMID 30524941;
  • 6. @ /not free/ @ PMID 29380032; @ Isolierung und Charakterisierung einer heterolog exprimierten bakteriellen Laccase aus dem anaeroben Geobacter metallireducens. @ Isolation and characterization of a heterologously expressed bacterial laccase from the anaerobe Geobacter metallireducens. | | Berini F, Verce M, Ausec L, Rosini E, Tonin F, Pollegioni L, Mandić-Mulec I. | | Appl Microbiol Biotechnol. 2018 Mar;102(5):2425-2439. doi: 10.1007/s00253-018-8785-z. Epub 2018 Jan 29.
  • 7. @ Free PMC Article @ PMID 28096491; @ Die Expression des Geobacter metallireducens PilA in Geobacter sulfurreducens ergibt Pili mit außergewöhnlicher Leitfähigkeit. @ Expressing the Geobacter metallireducens PilA in Geobacter sulfurreducens Yields Pili with Exceptional Conductivity. | | Tan Y, Adhikari RY, Malvankar NS, Ward JE, Woodard TL, Nevin KP, Lovley DR. | | MBio. 2017 Jan 17;8(1). pii: e02203-16. doi: 10.1128/mBio.02203-16.
  • 8. @ /not free/ @ PMID 27071000; @ Strukturelle Grundlage der Substratspezifität in Geobacter metallireducens SMUG1. @ Structural Basis of Substrate Specificity in Geobacter metallireducens SMUG1. | | Zhang Z, Shen J, Yang Y, Li J, Cao W, Xie W. | | ACS Chem Biol. 2016 Jun 17;11(6):1729-36. doi: 10.1021/acschembio.6b00164. Epub 2016 Apr 22.
  • 9. @ /not free/ @ PMID 26316547; Chaurasia et al. (2015)[32] @ Genetischer Nachweis, dass der Abbau von para-Cresol durch Geobacter metallireducens durch die periplasmatische para-Cresol-Methylhydroxylase katalysiert wird. @ Genetic evidence that the degradation of para-cresol by Geobacter metallireducens is catalyzed by the periplasmic para-cresol methylhydroxylase. | | Chaurasia AK, Tremblay PL, Holmes DE, Zhang T. | | FEMS Microbiol Lett. 2015 Oct;362(20). pii: fnv145. doi: 10.1093/femsle/fnv145. Epub 2015 Aug 26.
  • 10. @ /not free/ @ PMID 25622928; @ Fakultative Nitratreduktion durch elektrodenatmende Biofilme von Geobacter metallireducens als kompetitive Reaktion auf die Elektrodenreduktion in einem bioelektrochemischen System. @ Facultative nitrate reduction by electrode-respiring Geobacter metallireducens biofilms as a competitive reaction to electrode reduction in a bioelectrochemical system. | | Kashima H, Regan JM. | | Environ Sci Technol. 2015 Mar 3;49(5):3195-202. doi: 10.1021/es504882f. Epub 2015 Feb 9.
    • Der G.-metallireducens-Biofilm kümmert sich bei der Reduktion von Nitrat nicht viel um das Elektrodenpotential.
  • 11. @ Free Article @ PMID 25223645; @ Glutaryl-Coenzym Eine Dehydrogenase aus Geobacter metallireducens - Wechselwirkung mit elektronentransferierendem Flavoprotein und kinetische Grundlage der unidirektionalen Katalyse. @ Glutaryl-coenzyme A dehydrogenase from Geobacter metallireducens - interaction with electron transferring flavoprotein and kinetic basis of unidirectional catalysis. | | Estelmann S, Boll M. | | FEBS J. 2014 Nov;281(22):5120-31. doi: 10.1111/febs.13051. Epub 2014 Oct 4.
  • 12. @ Free PMC Article @ PMID 24904558; Zhang et al. (2014)[33] @ Identifizierung von Genen, die speziell für den anaeroben Metabolismus von Benzol in Geobacter metallireducens benötigt werden. @ Identification of genes specifically required for the anaerobic metabolism of benzene in Geobacter metallireducens. | | Zhang T, Tremblay PL, Chaurasia AK, Smith JA, Bain TS, Lovley DR. | | Front Microbiol. 2014 May 22;5:245. doi: 10.3389/fmicb.2014.00245. eCollection 2014.
  • 13. @ /not free/ @ PMID 24878278; Zhang et al. (2014)[34] @ Strukturelle Charakterisierung einer β-Hydroxysäure-Dehydrogenase aus Geobacter sulfurreducens und Geobacter metallireducens mit Bernsteinsäure-Semialdehyd-Reduktase-Aktivität. @ Structural characterization of a β-hydroxyacid dehydrogenase from Geobacter sulfurreducens and Geobacter metallireducens with succinic semialdehyde reductase activity. | | Zhang Y, Zheng Y, Qin L, Wang S, Buchko GW, Garavito RM. | | Biochimie. 2014 Sep;104:61-9. doi: 10.1016/j.biochi.2014.05.002. Epub 2014 May 27.
  • 14. @ Free PMC Article @ PMID 24837373; Rotaru et al. (2014)[35] @ Direkter Interspezies-Elektronentransfer zwischen Geobacter metallireducens und Methanosarcina barkeri. @ Direct interspecies electron transfer between Geobacter metallireducens and Methanosarcina barkeri. | | Rotaru AE, Shrestha PM, Liu F, Markovaite B, Chen S, Nevin KP, Lovley DR. | | Appl Environ Microbiol. 2014 Aug;80(15):4599-605.
  • 15. @ Free PMC Article @ PMID 24762737; Feist et al. (2014)[36] @ Constraint-basierte Modellierung der Kohlenstoff-Fixierung und die Energetik des Elektronentransfers in Geobacter metallireducens. @ Constraint-based modeling of carbon fixation and the energetics of electron transfer in Geobacter metallireducens. | | Feist AM, Nagarajan H, Rotaru AE, Tremblay PL, Zhang T, Nevin KP, Lovley DR, Zengler K. | | PLoS Comput Biol. 2014 Apr 24;10(4):e1003575. doi: 10.1371/journal.pcbi.1003575. eCollection 2014 Apr.
    • Anhand des Genoms, der bekannten Stoffwechselwege, der möglichen Thermodynamik usw., wurden Voraussagen über die Kohlenstofffixierung und Stoffwechselwege getroffen. So wurde gefunden, dass Geobacter metallireducens mit Fumarat und Fe(III) wachsen können müsste, was dann experimentell bestätigt wurde.
  • 16. @ Free Article @ PMID 24736031;[37] @ Physiologie von Geobacter metallireducens unter Überschuss und Einschränkung von Elektronendonoren. Teil II. Nachahmung der Umgebungsbedingungen während der Kultivierung in Retentostaten. @ Physiology of Geobacter metallireducens under excess and limitation of electron donors. Part II. Mimicking environmental conditions during cultivation in retentostats. | | Marozava S, Röling WF, Seifert J, Küffner R, von Bergen M, Meckenstock RU. | | Syst Appl Microbiol. 2014 Jun;37(4):287-95. doi: 10.1016/j.syapm.2014.02.005. Epub 2014 Apr 13.
    • Nutzung der Stoffwechselwege bei extrem niedrigen Wachstumsraten
  • 17. @ Free Article @ PMID 24731775;[38] @ Physiologie von Geobacter metallireducens unter Überschuss und Einschränkung von Elektronendonoren. Teil I. Stapelkultur mit einem Überschuss an Kohlenstoffquellen. @ Physiology of Geobacter metallireducens under excess and limitation of electron donors. Part I. Batch cultivation with excess of carbon sources. | | Marozava S, Röling WF, Seifert J, Küffner R, von Bergen M, Meckenstock RU. | | Syst Appl Microbiol. 2014 Jun;37(4):277-86. doi: 10.1016/j.syapm.2014.02.004. Epub 2014 Apr 14.
    • C-Katabolit-Repression ist da, aber nicht sehr ausgeprägt. Z. B. wird bei Verwertung von Acetat die Benzoatverwertung nicht abgeschaltet.
  • 18. @ Free PMC Article @ PMID 24096430; Zhang et. al. (2013)[39] @ Anaerobe Benzoloxidation über Phenol in Geobacter metallireducens. @ Anaerobic benzene oxidation via phenol in Geobacter metallireducens. | | Zhang T, Tremblay PL, Chaurasia AK, Smith JA, Bain TS, Lovley DR. | | Appl Environ Microbiol. 2013 Dec;79(24):7800-6. doi: 10.1128/AEM.03134-13. Epub 2013 Oct 4.
  • 19. @ Free PMC Article @ PMID 24039739; @ Strukturbestimmung und biochemische Charakterisierung einer putativen HNH-Endonuklease aus Geobacter metallireducens GS-15. @ Structure determination and biochemical characterization of a putative HNH endonuclease from Geobacter metallireducens GS-15. | | Xu SY, Kuzin AP, Seetharaman J, Gutjahr A, Chan SH, Chen Y, Xiao R, Acton TB, Montelione GT, Tong L. | | PLoS One. 2013 Sep 6;8(9):e72114. doi: 10.1371/journal.pone.0072114. eCollection 2013.
  • 20. @ /not free/ @ PMID 23994308; @ Lignocellulose-Hydrolysate und extrazelluläre Elektronenshuttles für die H2-Produktion durch Co-Kultur-Fermentation mit Clostridium beijerinckii und Geobacter metallireducens. @ Lignocellulosic hydrolysates and extracellular electron shuttles for H2 production using co-culture fermentation with Clostridium beijerinckii and Geobacter metallireducens. | | Zhang X, Ye X, Guo B, Finneran KT, Zilles JL, Morgenroth E. | | Bioresour Technol. 2013 Nov;147:89-95. doi: 10.1016/j.biortech.2013.07.106. Epub 2013 Jul 30.
  • 21. @ Free PMC Article @ PMID 23183974; @ Äußere Zelloberflächenkomponenten, die für die Reduktion von Fe (III) oxid durch Geobacter metallireducens wesentlich sind. @ Outer cell surface components essential for Fe(III) oxide reduction by Geobacter metallireducens. | | Smith JA, Lovley DR, Tremblay PL. | | Appl Environ Microbiol. 2013 Feb;79(3):901-7. doi: 10.1128/AEM.02954-12. Epub 2012 Nov 26.
  • 22. @ /not free/ @ PMID 23132348; @ Entfärbung von Azofarbstoffen durch Geobacter metallireducens. @ Decolorization of azo dyes by Geobacter metallireducens. | | Liu G, Zhou J, Chen C, Wang J, Jin R, Lv H. | | Appl Microbiol Biotechnol. 2013 Sep;97(17):7935-42. doi: 10.1007/s00253-012-4545-7. Epub 2012 Nov 8.
  • 23. @ Free PMC Article @ PMID 23042184; @ Evaluierung eines Genomskala in silico-Stoffwechselmodells für Geobacter metallireducens unter Verwendung von Proteomikdaten aus einem Feldbiostimulationsexperiment. @ Evaluation of a genome-scale in silico metabolic model for Geobacter metallireducens by using proteomic data from a field biostimulation experiment. | | Fang Y, Wilkins MJ, Yabusaki SB, Lipton MS, Long PE. | | Appl Environ Microbiol. 2012 Dec;78(24):8735-42. doi: 10.1128/AEM.01795-12. Epub 2012 Oct 5.
  • 24. @ /not free/ @ PMID 22886601; Zhang et al. (2013)[40] @ Wechselwirkungen zwischen Clostridium beijerinckii und Geobacter metallireducens bei der Co-Kultur-Fermentation mit Anthrahydrochinon-2,6-disulfonat (AH2QDS) für eine verstärkte Biowasserstoffproduktion aus Xylose. @ Interactions between Clostridium beijerinckii and Geobacter metallireducens in co-culture fermentation with anthrahydroquinone-2, 6-disulfonate (AH2QDS) for enhanced biohydrogen production from xylose. | | Zhang X, Ye X, Finneran KT, Zilles JL, Morgenroth E. | | Biotechnol Bioeng. 2013 Jan;110(1):164-72. doi: 10.1002/bit.24627. Epub 2012 Sep 1.
  • 25. @ Free PMC Article @ PMID 22408161; @ Identifizierung und Charakterisierung eines Succinyl-Coenzym A (CoA): Benzoat-CoA-Transferase in Geobacter metallireducens. @ Identification and characterization of a succinyl-coenzyme A (CoA):benzoate CoA transferase in Geobacter metallireducens. | | Oberender J, Kung JW, Seifert J, von Bergen M, Boll M. | | J Bacteriol. 2012 May;194(10):2501-8. doi: 10.1128/JB.00306-12. Epub 2012 Mar 9.
  • 26. @ /not free/ @ PMID 23757233; @ Ein genetisches System für Geobacter metallireducens: Die Rolle des Flagellins und des Pilins bei der Reduktion von Fe (III) oxid. @ A genetic system for Geobacter metallireducens: role of the flagellin and pilin in the reduction of Fe(III) oxide. | | Tremblay PL, Aklujkar M, Leang C, Nevin KP, Lovley D. | | Environ Microbiol Rep. 2012 Feb;4(1):82-8. doi: 10.1111/j.1758-2229.2011.00305.x. Epub 2011 Nov 27.
  • 27. @ Free PMC Article @ PMID 21235239; @ Lösungsstruktur von 4'-Phosphopantethein - GmACP3 von Geobacter metallireducens: ein spezialisiertes Acylträgerprotein mit atypischen Strukturmerkmalen und einer mutmaßlichen Rolle bei der Lipopolysaccharid - Biosynthese. @ Solution structure of 4'-phosphopantetheine - GmACP3 from Geobacter metallireducens: a specialized acyl carrier protein with atypical structural features and a putative role in lipopolysaccharide biosynthesis. | | Ramelot TA, Smola MJ, Lee HW, Ciccosanti C, Hamilton K, Acton TB, Xiao R, Everett JK, Prestegard JH, Montelione GT, Kennedy MA. | | Biochemistry. 2011 Mar 8;50(9):1442-53. doi: 10.1021/bi101932s. Epub 2011 Feb 14.
  • 28. @ Free PMC Article @ PMID 19915033; @ Identifizierung des zweibasigen Geobacter metallireducens bamVW-Systems, das an der transkriptionellen Regulation des aromatischen Abbaus beteiligt ist. @ Identification of the Geobacter metallireducens bamVW two-component system, involved in transcriptional regulation of aromatic degradation. | | Juárez JF, Zamarro MT, Barragán MJ, Blázquez B, Boll M, Kuntze K, García JL, Díaz E, Carmona M. | | Appl Environ Microbiol. 2010 Jan;76(1):383-5. doi: 10.1128/AEM.02255-09. Epub 2009 Nov 13.
  • 29. @ /not free/ @ PMID 19731662; @ Auswirkungen von Huminstoffen und Chinonen in geringen Konzentrationen auf die Reduktion von Ferrihydrit durch Geobacter metallireducens. @ Effects of humic substances and quinones at low concentrations on ferrihydrite reduction by Geobacter metallireducens. | | Wolf M, Kappler A, Jiang J, Meckenstock RU. | | Environ Sci Technol. 2009 Aug 1;43(15):5679-85.
  • 30. @ /not free/ @ PMID 19638178; @ Wie Geobacteraceae die biologische Abbaubarkeit der Untergründe dominieren kann: Physiologie von Geobacter metallireducens in Retentostaten mit langsamen Wachstumsräumen. @ How Geobacteraceae may dominate subsurface biodegradation: physiology of Geobacter metallireducens in slow-growth habitat-simulating retentostats. | | Lin B, Westerhoff HV, Röling WF. | | Environ Microbiol. 2009 Sep;11(9):2425-33. doi: 10.1111/j.1462-2920.2009.01971.x. Epub 2009 Jul 22.
  • 31. @ Free PMC Article @ PMID 19497847; @ Die differenzielle Membranproteomanalyse offenbart neue Proteine, die am Abbau aromatischer Verbindungen in Geobacter metallireducens beteiligt sind. @ Differential membrane proteome analysis reveals novel proteins involved in the degradation of aromatic compounds in Geobacter metallireducens. | | Heintz D, Gallien S, Wischgoll S, Ullmann AK, Schaeffer C, Kretzschmar AK, van Dorsselaer A, Boll M. | | Mol Cell Proteomics. 2009 Sep;8(9):2159-69. doi: 10.1074/mcp.M900061-MCP200. Epub 2009 Jun 3.
  • 32. @ Free PMC Article @ PMID 19473543; @ Die Genomsequenz von Geobacter metallireducens: Merkmale des Metabolismus, der Physiologie und der Regulation, die denen von Geobacter sulfurreducens gemeinsam sind. @ The genome sequence of Geobacter metallireducens: features of metabolism, physiology and regulation common and dissimilar to Geobacter sulfurreducens. | | Aklujkar M, Krushkal J, DiBartolo G, Lapidus A, Land ML, Lovley DR. | | BMC Microbiol. 2009 May 27;9:109. doi: 10.1186/1471-2180-9-109.
  • 33. @ Free PMC Article @ PMID 19376902; Schleinitz et al. (2009)[41] @ Phenolabbau im streng anaeroben, Eisen reduzierenden Bakterium Geobacter metallireducens GS-15. @ Phenol degradation in the strictly anaerobic iron-reducing bacterium Geobacter metallireducens GS-15. | | Schleinitz KM, Schmeling S, Jehmlich N, von Bergen M, Harms H, Kleinsteuber S, Vogt C, Fuchs G. | | Appl Environ Microbiol. 2009 Jun;75(12):3912-9. doi: 10.1128/AEM.01525-08. Epub 2009 Apr 17.
  • 34. @ Free PMC Article @ PMID 19363069; Icopini et al. (2009)[42] @ Plutonium (V / VI) Reduktion durch die metallreduzierenden Bakterien Geobacter metallireducens GS-15 und Shewanella oneidensis MR-1. @ Plutonium(V/VI) Reduction by the Metal-Reducing Bacteria Geobacter metallireducens GS-15 and Shewanella oneidensis MR-1. | | Icopini GA, Lack JG, Hersman LE, Neu MP, Boukhalfa H. | | Appl Environ Microbiol. 2009 Jun;75(11):3641-7. doi: 10.1128/AEM.00022-09. Epub 2009 Apr 10.
    • keine Syntrophien, Plutonium
  • 35. @ Free PMC Article @ PMID 19175927; @ Constraint-basierte Modellierung von Geobacter metallireducens im Genom-Maßstab. @ Genome-scale constraint-based modeling of Geobacter metallireducens. | | Sun J, Sayyar B, Butler JE, Pharkya P, Fahland TR, Famili I, Schilling CH, Lovley DR, Mahadevan R. | | BMC Syst Biol. 2009 Jan 28;3:15. doi: 10.1186/1752-0509-3-15.
  • 36. @ /not free/ @ PMID 19031861; Tobler et al. (2008)[43] @ Kohlenstoff- und Wasserstoffisotopenfraktionierung während der anaeroben Toluoloxidation durch Geobacter metallireducens mit verschiedenen Fe (III)-Phasen als terminale Elektronenakzeptoren. @ Carbon and hydrogen isotope fractionation during anaerobic toluene oxidation by Geobacter metallireducens with different Fe(III) phases as terminal electron acceptors. | | Tobler NB, Hofstetter TB, Schwarzenbach RP. | | Environ Sci Technol. 2008 Nov 1;42(21):7786-92.
  • 37. @ Free PMC Article @ PMID 18658262; Johannes et al. (2008)[44] @ Reinigung und Charakterisierung von Komponenten des aktiven Zentrums des mutmaßlichen p-Kresol-Methylhydroxylase-Membrankomplexes von Geobacter metallireducens. @ Purification and characterization of active-site components of the putative p-cresol methylhydroxylase membrane complex from Geobacter metallireducens. | | Johannes J, Bluschke A, Jehmlich N, von Bergen M, Boll M. | | J Bacteriol. 2008 Oct;190(19):6493-500. doi: 10.1128/JB.00790-08. Epub 2008 Jul 25.
  • 38. @ /not free/ @ PMID 18239998; Kwon et al. (2008)[45] @ Biotransformationsprodukte und Mineralisierungspotential für Hexahydro-1,3,5-trinitro-1,3,5-triazin (RDX) bei abiotischen gegenüber biologischen Abbauwegen mit Anthrachinon-2,6-disulfonat (AQDS) und Geobacter metallireducens. @ Biotransformation products and mineralization potential for hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) in abiotic versus biological degradation pathways with anthraquinone-2,6-disulfonate (AQDS) and Geobacter metallireducens. | | Kwon MJ, Finneran KT. | | Biodegradation. 2008 Sep;19(5):705-15. doi: 10.1007/s10532-008-9175-5. Epub 2008 Feb 1.
    • Sprengstoff Hexogen
  • 39. @ /not free/ @ PMID 17994620; @ Steady-State-Proteinkonzentrationen in Geobacter metallireducens, die mit Eisen(III)-citrat oder -nitrat als terminalem Elektronenakzeptor gezüchtet wurden. @ Steady state protein levels in Geobacter metallireducens grown with iron (III) citrate or nitrate as terminal electron acceptor. | | Ahrendt AJ, Tollaksen SL, Lindberg C, Zhu W, Yates JR 3rd, Nevin KP, Babnigg G, Lovley DR, Giometti CS. | | Proteomics. 2007 Nov;7(22):4148-57.
  • 40. @ Free PMC Article @ PMID 17644643; Boukhalfa et al. (2007)[46] @ Plutonium(IV)-Reduktion durch die metallreduzierenden Bakterien Geobacter metallireducens GS15 und Shewanella oneidensis MR1. @ Plutonium(IV) reduction by the metal-reducing bacteria Geobacter metallireducens GS15 and Shewanella oneidensis MR1. | | Boukhalfa H, Icopini GA, Reilly SD, Neu MP. | | Appl Environ Microbiol. 2007 Sep;73(18):5897-903. Epub 2007 Jul 20.
    • keine Syntrophien, Plutonium
  • 41. @ FreePMC Article @ PMID 17578578; @ Genomische und Microarray-Analyse des Aromatenabbaus in Geobacter metallireducens und Vergleich mit einem Geobacter-Isolat aus einer kontaminierten Feldstelle. @ Genomic and microarray analysis of aromatics degradation in Geobacter metallireducens and comparison to a Geobacter isolate from a contaminated field site. | | Butler JE, He Q, Nevin KP, He Z, Zhou J, Lovley DR. | | BMC Genomics. 2007 Jun 19;8:180.
  • 42. @ FreePMC Article @ PMID 17468285; @ Flussanalyse zentraler Stoffwechselwege in Geobacter metallireducens während der Reduktion von löslicher Fe (III) -nitrilotriessigsäure. @ Flux analysis of central metabolic pathways in Geobacter metallireducens during reduction of soluble Fe(III)-nitrilotriacetic acid. | | Tang YJ, Chakraborty R, Martín HG, Chu J, Hazen TC, Keasling JD. | | Appl Environ Microbiol. 2007 Jun;73(12):3859-64. Epub 2007 Apr 27.
  • 43. @ FreePMC Article @ PMID 17449613; @ Gene, Enzyme und Regulation des Para-Cresol-Metabolismus in Geobacter metallireducens. @ Genes, enzymes, and regulation of para-cresol metabolism in Geobacter metallireducens. | | Peters F, Heintz D, Johannes J, van Dorsselaer A, Boll M. | | J Bacteriol. 2007 Jul;189(13):4729-38. Epub 2007 Apr 20.
  • 44. @ FreePMC Article @ PMID 17122342; Peters et al. (2007)[47] @ Cyclohexa-1,5-dien-1-carbonyl-coenzym A (CoA) -Hydratasen von Geobacter metallireducens und Syntrophus aciditrophicus: Hinweise auf einen üblichen Benzoyl-CoA-Abbauweg in fakultativen und strengen Anaerobiern. @ Cyclohexa-1,5-diene-1-carbonyl-coenzyme A (CoA) hydratases of Geobacter metallireducens and Syntrophus aciditrophicus: Evidence for a common benzoyl-CoA degradation pathway in facultative and strict anaerobes. | | Peters F, Shinoda Y, McInerney MJ, Boll M. | | J Bacteriol. 2007 Feb;189(3):1055-60. Epub 2006 Nov 22.
    • keine Syntrophien, nur Vergleich, Plutonium
  • 45. @ /not free/ @ PMID 16423022; Jahn et al. (2006)[48] @ Reduktion des Preußischen Blaus durch die beiden eisenreduzierenden Mikroorganismen Geobacter metallireducens und Shewanella alge. @ Reduction of Prussian Blue by the two iron-reducing microorganisms Geobacter metallireducens and Shewanella alga. | | Jahn MK, Haderlein SB, Meckenstock RU. | | Environ Microbiol. 2006 Feb;8(2):362-7.
  • 46. @ FreePMC Article @ PMID 16385034; @ Genetische Charakterisierung eines einzelnen bifunktionellen Enzyms zur Reduktion von Fumarat und Succinat-Oxidation in Geobacter sulfurreducens und Entwicklung der Fumarat-Reduktion in Geobacter metallireducens. @ Genetic characterization of a single bifunctional enzyme for fumarate reduction and succinate oxidation in Geobacter sulfurreducens and engineering of fumarate reduction in Geobacter metallireducens. | | Butler JE, Glaven RH, Esteve-Núñez A, Núñez C, Shelobolina ES, Bond DR, Lovley DR. | | J Bacteriol. 2006 Jan;188(2):450-5.
  • 47. @ FreeArticle @ PMID 16313613; @ Gencluster, die am anaeroben Benzoatabbau von Geobacter metallireducens beteiligt sind. @ Gene clusters involved in anaerobic benzoate degradation of Geobacter metallireducens. | | Wischgoll S, Heintz D, Peters F, Erxleben A, Sarnighausen E, Reski R, Van Dorsselaer A, Boll M. | | Mol Microbiol. 2005 Dec;58(5):1238-52.
  • 48. @ FreePMC Article @ PMID 15525704; Vali et al. (2004)[49] @ Bildung von tafelförmigem Einzeldomänenmagnetit, induziert durch Geobacter metallireducens GS-15. @ Formation of tabular single-domain magnetite induced by Geobacter metallireducens GS-15. | | Vali H, Weiss B, Li YL, Sears SK, Kim SS, Kirschvink JL, Zhang CL. | | Proc Natl Acad Sci U S A. 2004 Nov 16;101(46):16121-6. Epub 2004 Nov 3.
    • Superparamagnetisches Magnetit
  • 49. @ FreePMC Article @ PMID 15128571; Ortiz-Bernad (2004)[50] @ Vanadiumatmung durch Geobacter metallireducens: Neue Strategie zur In-situ-Entfernung von Vanadium aus dem Grundwasser. @ Vanadium respiration by Geobacter metallireducens: novel strategy for in situ removal of vanadium from groundwater. | | Ortiz-Bernad I, Anderson RT, Vrionis HA, Lovley DR. | | Appl Environ Microbiol. 2004 May;70(5):3091-5.
    • Entfernung von Vanadium aus dem Grundwasser
  • 50. @ /not free/ @ PMID 12449317; Kane et al. (2002) [51] @ Biochemischer und genetischer Nachweis der Benzylsuccinatsynthase in Toluol abbauenden, Eisen(II)-reduzierenden Geobacter metallireducens. @ Biochemical and genetic evidence of benzylsuccinate synthase in toluene-degrading, ferric iron-reducing Geobacter metallireducens. | | Kane SR, Beller HR, Legler TC, Anderson RT. | | Biodegradation. 2002;13(2):149-54.
    • Toluol, Eisen(II)
  • 51. @ /not free/ @ PMID 11961561; Childers et al. (2002)[52] @ Geobacter metallireducens greift durch Chemotaxis auf unlösliches Eisen(III)-oxid zu. @ Geobacter metallireducens accesses insoluble Fe(III) oxide by chemotaxis. | | Childers SE, Ciufo S, Lovley DR. | | Nature. 2002 Apr 18;416(6882):767-9.
    • Chemotaxis in Bezug auf Eisen und Mangan. Nur, wenn unlösliches Eisen(III) oder Mangan(IV) vorhanden ist, bildet G. m. Flagellen (Beweglichkeit) und bildet Pili (Steigerung der Exoelekrogenität). Chemotaxis richtet sich dann nach der Fe(II)- und Mn(II)-Konzentration. Erklärung für die Dominanz von G. m. in manchen Sedimenten.
  • 52. @ FreePMC Article @ PMID 11472960; @ Evidenz für eisenabhängige Nitratatmung im dissimilatorischen eisenreduzierenden Bakterium Geobacter metallireducens. @ Evidence for iron-dependent nitrate respiration in the dissimilatory iron-reducing bacterium Geobacter metallireducens. | | Senko JM, Stolz JF. | | Appl Environ Microbiol. 2001 Aug;67(8):3750-2.

Die erste Isolation von Mikroben der späteren Gattung Geobacter erfolgte 1987 durch Derek Lovley aus Sedimenten des Potomac River.[53]

Die Gattung Geobacter wurde 1993 zusammen mit ihrer Typusart G. metallireducens durch Lovley et al. beschrieben[1] und 1995 bestätigt.[2]

(Geobacter sulfurreducens als neue Art,[7] 1995 bestätigt[2])

  • G. metallireducens (Familie Geobacteraceae) überträgt Elektronen auf M. barkeri, so dass M. barkeri diese für die Reduktion des Kohlendioxids nutzen kann.[54]


Eigenschaften der Gattung

Wenn man zu Informationen über die Typusart G. metallireducens (1993,[55] 1988[56]) und über die häufig damit verglichenen Art G. sulfurreducens,1994[57]) einige Art-Beschreibungen der Gattung Geobacter hinzuzieht (G. lovleyi,2006[58] G. anodireducens,2014[59] G. uraniireducens,2008[60] G. toluenoxydans,2010[61] G. psychrophilus,2005[62] G. bremensis,2001[63] G. pelophilus,2001[63] G. chapellei,2001[64] G. hydrogenophilus,2001[64] G. grbiciae,2001[64] G. bemidjiensis,2005[62]), ergibt sich folgendes Bild:

  • Geobacter ist eine Gattung gramnegativer, chemoorganothropher Anaerobier, deren Zellen stäbchenförmig sind und die keine Sporen bilden.
  • Die Zellen sind häufig unbeweglich, können aber bei einigen Arten auch Geißeln ausbilden und dann beweglich sein. Die Größe der Zellen liegt häufig im Bereich von 1 bis 3 Mikrometer (µm) Länge und 0,5 bis 0,6 µm Durchmesser. Es gibt kürzere (0,8 µm), längere (4 µm), dünnere (0,3 µm) und dickere (0,8 µm) Zellen in dieser Gattung. Es sind häufig gerade Stäbchen, bei einigen Art leicht gekrümmte bis gekrümmte Stäbchen.
  • Die optimalen Wachstumstemparaturen befindet sich meist im Bereich von 30 bis 35 °C, können aber auch niedriger liegen (bis zu 17 °C). Die bevorzugten pH-Werte sind meist leicht sauer bis neutral. Der für ein Wachstum günstige Salzgehalt im Medium entspricht häufig dem von Süßwasser; Stoffwechsel kann aber auch bei einer höheren Konzentration möglich sein (die der Hälfte von Meerwasser entspricht).
  • Geobacter sind bezüglich ihres Stoffwechsels Anaerobier; der Kontakt mit Sauerstoff wird manchmal vertragen (Aerotoleranz bei G. anodireducens[59]).
  • Geobacter sind dissimilatorische Eisenreduzierer.[A 1] Sie können die Oxidation von Acetat als Elektronendonator an die Reduktion von dreiwertigem Eisen [Fe(III)] als Elektronenakzeptor koppeln. Darüber hinaus sind je nach Geobacter-Art, bzw. je nach verwendetem Stamm, viele weitere Elektronendonatoren (z. B. Wasserstoff, verschiedene organische Säuren) und Elektronenakzeptoren möglich (z. B. vierwertiges Mangan [Mn(IV)], Antrachinon-2,6-disulfonat, Fumarat, Malat, Schwefel).
Eigenschaften \ Arten metallireducens sulfurreducens lovleyi anodireducens uraniireducens
Beschreibung als neue Art 1993[55] (1988)[56] 1994[57] 2006[58] 2014[59] 2008[60]
Form Stäbchen Stäbchen Stäbchen Stäbchen Stäbchen (normal oder leicht gekrümmt)
Größe 2 µm bis 4 µm X 0.5 µm[56] 2 bis 3 μm X 0,5 μm 1 bis 1,4 μm X 0,4 μm 0,8 bis 1,3 X 0,3 µm 1,2 bis 2,0 μm X 0,5 bis 0,6 μm
Gram-Färbung negativ negativ negativ negativ negativ
Aerobie/ Anaerobie anaerob strikt anaerob anaerob anaerob, aerotolerant (anaerob)
Optimale Wachstumstemparatur 30 bis 35 °C 30 bis 35 °C 35 °C 30 bis 35 °C 32 °C (Wachstum zwischen 10 bis 34 °C)
Beweglichkeit Umweltabhängig unbeweglich beweglich unbeweglich beweglich, 2 oder 4 Geißeln, Pili, Vesikel
Eigenschaften \ Arten toluenoxydans psychrophilus bremensis pelophilus
Beschreibung als neue Art 2010[61] 2005[62] 2001[63] 2001[63]
Form Stäbchen (gerade) Stäbchen (gekrümmt) Stäbchen (leicht gekrümmt) Stäbchen (leicht gekrümmt)
Größe 2,1 bis 3,8 μm X 0,4 μm 2,5 bis 3 µm X 0,8 µm 1,8 µm X 0,6 µm 1,8 µm X 0,6 µm
Gram-Färbung negativ negativ negativ negativ
Aerobie/ Anaerobie obligat anaerob anaerob strikt anaerob strikt anaerob
Optimale Wachstumstemparatur 25–32 °C 17–30 °C (4 bis 30 °C) 30–32 °C 30–32 °C
Beweglichkeit unbeweglich beweglich (eine Geißel) meist unbeweglich (tendieren zu Klumpen meist unbeweglich (tendieren zu Klumpen)
Eigenschaften \ Arten chapellei hydrogenophilus grbiciae bemidjiensis
Beschreibung als neue Art 2001[64] 2001[64] 2001[64] 2005[62]
Form Stäbchen Stäbchen Stäbchen gekrümmte Stäbchen
Größe 1 bis 2 X 0,6 µm 1 bis 2 X 0,6 µm 1 bis 2 X 0,6 µm 2,5 bis 4 μm X 0,5 μm
Gram-Färbung negativ negativ negativ negativ
Aerobie/ Anaerobie Strikt anaerob Strikt anaerob Strikt anaerob (anaerob)
Optimale Wachstumstemparatur 25 °C 35 °C ? 30 °C (15 bis 37 °C)
Beweglichkeit unbeweglich unbeweglich unbeweglich unbeweglich

Description of Geobacter chapellei sp. nov. Geobacter chapellei (cha.pel«le.i. N.L. gen. masc. n. chapellei of Chapelle, named after Frank Chapelle, who contributed to our knowledge of subsurface biogeochemistry). Rod-shaped, non-motile, Gram-negative bacterium with cell dimensions of 1–2¬0±6 µm. Does not form spores. Strictly anaerobic chemo-organotroph that oxidizes acetate with the concomitant reduction of Fe(III). Other electron donors used in addition to acetate include ethanol, lactate and formate. Electron acceptors used include Fe(III), Mn(IV), fumarate and the humic-substance analogue 2,6-anthraquinone disulfonate; it does not use Fe(III) chelated with citrate.Whole-cell suspensions reduce U(VI), although it is not known whether this type of metabolism can supply energy for growth. Geobacter chapellei is redox sensitive and its growth rate is improved significantly by the presence of a reducing agent, such as Fe(II), in the medium. The cells contain c-type cytochromes. The optimum temperature for growth is 25 °C. Geobacter chapellei strain 172T was obtained from Fe(III)- reducing enrichments of subsamples from deep aquifer sediments of the Atlantic Coastal Plain in South Carolina, USA. The type strain is strain 172T (¯ATCC 51744T¯DSM 13688T).

Description of Geobacter hydrogenophilus sp. nov. Geobacter hydrogenophilus (hy.dro.ge.no«phi.lus. N.L. n. hydrogenium hydrogen; Gr. adj. philos friendly to; N.L. adj. hydrogenophilus liking hydrogen, referring to the ability of the organism to grow by oxidation of hydrogen). Non-motile, non-spore-forming, rod-shaped, Gramnegative organism with cell dimensions of 1– 2¬0±6 µm. A strictly anaerobic chemo-organotroph that oxidizes acetate, formate, propionate, butyrate, ethanol, pyruvate, succinate and benzoate with the concomitant reduction of Fe(III). It also grows by the oxidation of H# with the reduction of Fe(III) when citrate is provided as a carbon source. Growth is also possible with fumarate or the humic-substance analogue 2,6-anthraquinone disulfonate as the electron acceptor. S! is reduced, but S! reduction does not yield energy to support growth. Cell suspensions reduce U(VI). The temperature and pH optima are 35 °C and 6±5. Geobacter hydrogenophilus can grow in medium containing 1% (w}v) NaCl, but grows optimally in freshwater medium. The cells contain c-type cytochromes. Geobacter hydrogenophilus was enriched from samples taken from a hydrocarbon-contaminated aquifer at the Defense Fuel Supply Center, Hanahan, SC, USA, using acetate as the electron donor and Fe(III)-nitrilotriacetic acid as the electron acceptor. The type strain is strain H-2T (¯ATCC 51590T¯DSM 13691T).

Description of Geobacter grbiciae sp. nov. Geobacter grbiciae (grb.i«ci.ae. N.L. gen. fem. n. grbiciae of Grbic, named in honour of Dunja GrbicGalic for her significant contributions to the field of anaerobic aromatic hydrocarbon oxidation). Cells are rod-shaped, Gram-negative, 1–2¬0±6 µm, non-motile and do not form spores. Strictly anaerobic chemo-organotroph that oxidizes acetate and other simple fatty acids or ethanol with the concomitant reduction of Fe(III). Strain TACP-5 can also oxidize monoaromatic compounds, including toluene, as alternative electron donors. Strain TACP-5 can use H# . Strain TACP-2T can be grown with the various forms of soluble Fe(III) as well as with poorly crystalline Fe(III) oxide. In contrast, strain TACP-5 does not grow with Fe(III) chelated with citrate. Strains TACP-2T and TACP-5 were isolated from freshwater aquatic sediment taken from the estuary of the Potomac River in Virginia, USA, at the same site that previously yielded Geobacter metallireducens. The type strain is strain TACP-2T (¯ATCC BAA-45T¯ DSM 13689T). Strain TACP-5 (¯ATCC BAA-46¯ DSM 13690) is a reference strain.


Description of Geobacter bemidjiensis sp. nov.

Geobacter bemidjiensis (be.mid.ji.en′sis. N.L. masc. adj. bemidjiensis from Bemidji, MN, USA, where sediment samples were taken from which the type strain was isolated).

Non-motile, Gram-negative, curved rods, approximately 2·5–4 μm in length and 0·5 μm in diameter. Can couple the reduction of Fe(III) to the oxidation of acetate, benzoate, butanol, butyrate, ethanol, hydrogen, isobutyrate, malate, lactate, propionate, pyruvate, succinate and valerate. No growth when acetoin, arginine, benzaldehyde, benzyl alcohol, caproate, Casamino acids, ferulate, fructose, formate, gallic acid, glucose, glycerol, glutamine, isopropanol, mannitol, methanol, naphthalene, nicotinate, o-hydroxybenzoate, p-hydroxybenzaldehyde, p-hydroxybenzoate, p-hydroxybenzyl alcohol, phenol, proline, salicylic acid, serine, syringate, tryptone, toluene or yeast extract is provided as the electron donor. This species can utilize Fe(III), fumarate, AQDS, malate and manganese(IV) oxide as electron acceptors. No growth when elemental sulfur, nitrate, sulfate, thiosulfate or a graphite electrode is provided as the electron acceptor. Growth occurs at temperatures between 15 and 37 °C (optimum temperature is approximately 30 °C). c-Type cytochromes are abundant. The G+C content of the DNA is 60·9 mol%.

The type strain is strain Bem T (=ATCC BAA-1014 T=DSM 16622 T=JCM 12645 T). The 16S rRNA (AY187307),gyrB (AY547335), fusA (AY188890), nifD (AY186994), rpoB (AY186914) and recA (AY186883) gene sequences of the type strain have been deposited in GenBank.



Description of Geobacter toluenoxydans sp. nov.

Geobacter toluenoxydans [to.lu.e.nox′y.dans. N.L. n. toluenum toluene; N.L. v. oxydo (from Gr. adj. oxussharp, acid) to oxidize; N.L. part. adj. toluenoxydans oxidizing toluene].

Gram-stain-negative, non-spore-forming, non-motile, straight rods, 2.1–3.8 μm long and 0.4 μm wide. Obligate anaerobe. Utilizes ferrihydrite, ferric citrate and fumarate as electron acceptors with acetate as electron donor. Does not reduce Mn(IV), nitrate, sulfate, sulfite, thiosulfate or sulfur. Electron donors used include toluene, benzyl alcohol, benzaldehyde, phenol, m-cresol, p-cresol, acetate, butyrate, formate, propionate, pyruvate and benzoate. Does not utilize fumarate, lactate, malate, succinate or o-cresol. pH range for growth is pH 6.6–7.5 (optimum pH 6.6–7.0). Optimum growth temperature is 25–32 °C. Contains 15 : 0 anteiso but not 18 : 1 ω7 c fatty acids. Characteristics useful to differentiate the type strain from other members of the genus Geobacter are depicted in Table 1 T1 . The G+C content of the type strain is 54.4 mol%.


Description of Geobacter psychrophilus sp. nov.

Geobacter psychrophilus (psy.chro′phil.us. Gr. adj. psychros cold; Gr. adj. philos liking, loving; N.L. masc. adj. psychrophilus cold-loving).

Motile (monotrichous flagella), Gram-negative curved rods, approximately 2·5–3 μm in length and 0·8 μm in diameter. Can couple the reduction of Fe(III) to the oxidation of acetate, butanol, ethanol, formate, lactate, malate, pyruvate and succinate as the electron donor. No growth when acetoin, arginine, benzoate, butyrate, caproate, Casamino acids, ferulate, fructose, gallic acid, glycerol, hydrogen, isobutyrate, mannitol, nicotinate, proline, propionate, serine, syringate, tryptone, valerate or yeast extract is provided as electron donor. This species can utilize AQDS, iron(III) citrate, iron(III) oxide, iron(III) pyrophosphate, iron(III) NTA, fumarate, malate, manganese(IV) oxide and graphite electrodes as electron acceptors. No growth when elemental sulfur, nitrate, sulfate or thiosulfate is provided as electron acceptor. Growth occurs at temperatures between 4 and 30 °C (optimum temperature range is 17–30 °C).c-Type cytochromes are abundant. The G+C content of the DNA of the type strain is 63·8 mol%.

The type strain is strain P35 T (=ATCC BAA-1013 T=DSM 16674 T=JCM 12644 T). The 16S rRNA (AY653548),fusA (AY653550) and nifD (AY795909) gene sequences have been deposited in GenBank.


Description of Geobacter bremensis sp. nov. Geobacter bremensis (bre.men«sis. N.L. n. Brema Bremen, in northern Germany; L. masc. suffix -ensis indicating provenance; N.L. masc. adj. bremensis from Bremen, where samples for enrichment cultures were taken). Gram-negative, slightly curved rods, 1±8 µm long and 0±6 µm wide; the majority of the cells are non-motile and tend to form aggregates. No formation of spores. Multiplication by binary fission. The colour of the cells is red due to the presence of c-type cytochromes. Electron donors utilized are hydrogen, formate, acetate, propionate, butyrate, pyruvate, lactate, malate, succinate, fumarate, benzoate, ethanol, propanol and butanol. Electron acceptors utilized are Fe(III), Mn(IV), S!, fumarate and malate; strictly anaerobic. Optimal growth with ferrihydrite as the electron acceptor at 30–32 °C and pH 5±5–6±7. No vitamins required. The G­C content of the DNA is 60 mol%. The type strain, Dfr1T (¯DSM 12179T¯OCM 796T), was isolated from a freshwater ditch in Bremen, Germany.


Description of Geobacter pelophilus sp. nov. Geobacter pelophilus (pe.lo«phi.lus. Gr. n. pelos mud; Gr. adj. philos loving; N.L. masc. adj. pelophilus mudloving, as this species was isolated from freshwater mud). Gram-negative, slightly curved rods, 1±5 µm long and 0±6 µm wide; the majority of the cells are non-motile and tend to form aggregates. No formation of spores. Multiplication by binary fission. The colour of the cells is red due to the presence of c-type cytochromes. Electron donors utilized are hydrogen, formate, acetate, propionate, pyruvate, malate, succinate, fumarate, ethanol and propanol. Electron acceptors utilized are Fe(III), Mn(IV), S!, fumarate and malate; strictly anaerobic. Optimal growth with ferrihydrite as the electron acceptor at 30–32 °C and pH 6±7–7. No vitamins required. The G­C content of the DNA is 53 mol%. The type strain, Dfr2T (¯DSM 12255T¯OCM 797T), was isolated from a freshwater ditch in Bremen, Germany



Description of Geobacter sulfurreducens sp. nov. Geobacter sulfurreducens (sul'fer.re.du'cens. L. n. sulfur, sulfur; L. part. adj. reducens, converting to a different state; N.L. adj. sulfurreducens, reducing sulfur). Rod-shaped, gram-negative cells 2 to 3 by 0.5 ,um, nonmotile, with no spore formation. Strict anaerobic chemoorganotroph which oxidizes acetate with Fe(III), S, Co(III), fumarate, or malate as the electron acceptor. Hydrogen is also used as an electron donor for Fe(III) reduction, whereas other carboxylic acids, sugars, alcohols, amino acids, yeast extract, phenol, and benzoate are not. Temperature optimum is 30 to 35°C. Cells contain c-type VOL. 60, 1994 3758 CACCAVO ET AL. cytochromes. Grows in up to one-half the NaCl concentration of seawater. Habitat. G. sulfurreducens was enriched from surface sediments of a ditch in Norman, Okla., with acetate as the electron donor and ferric PPi as the electron acceptor. Type strain. The type strain of G. sulfurreducens is PCA.

Description of Geobacter lovleyi sp. nov. / Geobacter lovleyi was named to recognize the contributions of Derek R. Lovley to our understanding of microbial metal and radionuclide reduction.

Geobacter lovleyi is a rod-shaped, motile, gram-negative, and anaerobic bacterium with cell dimensions of 1 to 1.4 μm by 0.4 μm.

The G+C content of strain SZ is 56.7 ± 0.3 mol%. Electron donors include acetate, pyruvate, and H2. PCE, TCE, nitrate, soluble and insoluble forms of ferric ion, manganic ion, sulfur, fumarate, malate, and U(VI) are used as electron acceptors.

PCE is reduced to cis-DCE as the final product. Optimum growth occurs at 35°C and pH 6.8. Strain SZ was isolated from noncontaminated freshwater sediment collected from Su-Zi Creek, South Korea.

Phylogenetic, genotypic, and phenotypic characteristics place strain SZ in the Geobacter cluster within the family Geobacteraceae in the δ-subclass of the Proteobacteria and warrant classifying strain SZ as the type strain of a new species, Geobacter lovleyi sp. nov. Strain SZ has been deposited at the Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH (DSM 17278) and the ATCC (BAA-1151).

Description of Geobacter anodireducens sp. nov.

Geobacter anodireducens (a.no.di.re.du′cens. N.L. neut. n. anodum anode; L. part. adj. reducensconverting to a different state; N.L. part. adj. anodireducens reducing an anode).

Short rod-shaped (0.8–1.3×0.3 µm), Gram-negative, non-motile cells with no spore formation. Aerotolerant, anaerobic chemo-organotroph that oxidizes acetate, hydrogen, lactate or pyruvate with ferric citrate or an anode in BESs as electron donors, but not saccharides. With acetate as electron donor, Fe(III) and sulfur are reduced as electron acceptors, but not fumarate, malate or nitrate. Growth occurs at 15–42 °C and pH 6.0–8.5, with optimal growth at 30–35 °C and pH 7. Grows in basal medium containing as much as 3 % NaCl. The major respiratory quinone is MK-8. The major fatty acids are 16 : 1ω7 c, 16 : 0, 14 : 0 and iso-15 : 0.

The type strain, SD-1 T ( = CGMCC 1.12536 T = KCTC 4672 T), was isolated from a biofilm in a previously studied MFC initially inoculated with domestic wastewater (effluent from the primary clarifier at the Pennsylvania State University Wastewater Treatment Plant). The type strain has 61.6 % DNA–DNA relatedness with G. sulfurreducens ATCC 51573 T, and the DNA G+C content of the type strain is 58.9 mol%.


Description of Geobacter uraniireducens sp. nov.

Geobacter uraniireducens (u.ra.ni.i.re.du′cens. N.L. n. uranium uranium; L. part. adj. reducens leading back, bringing back and, in chemistry, converting to a reduced oxidation state; N.L. part. adj. uraniireducensreducing uranium).

Cells are Gram-negative, motile, regular or slightly curved rods, 1.2–2.0 μm long and 0.5–0.6 μm in diameter. When grown on 20 mM fumarate/10 mM acetate or 20 mM malate/10 mM acetate medium, cells have two to four flagella (up to 16 μm long), pili and vesicles. On 20 mM fumarate/10 mM acetate medium, growth is most rapid at pH 6.5–7.0; no growth is observed below pH 6.0 or above pH 7.7. Optimal growth is at 32 °C; no growth is observed at initial temperatures lower than 10 °C or higher than 34 °C. With 100 mmol poorly crystalline Fe(III) oxide l −1 as electron acceptor, the following electron donors are utilized: acetate, lactate, pyruvate and ethanol. Hydrogen (H 2/CO 2; 80 : 20, v/v), formate, methanol, butanol, butyrate, valerate, propionate, succinate and citrate are not utilized as electron donors. With 20 mM acetate, the following electron acceptors are utilized: poorly crystalline Fe(III) oxide, ferruginous smectite SWa-1, Fe(III) nitrilotriacetate, Fe(III) pyrophosphate, birnessite (MnOOH), AQDS, malate and fumarate. Oxygen, Fe(III) citrate, sulfate, sulfite, thiosulfate, elemental sulfur and nitrate are not utilized as electron acceptors. Cell suspensions reduce U(VI). The major fatty acids are 16 : 1 ω7 c, 16 : 0, i15 : 0 and 14 : 0.

The type strain is Rf4 T (=ATCC BAA-1134 T =JCM 13001 T), isolated from subsurface sediment undergoing uranium bioremediation. The DNA G+C content of the type strain is 54.0 mol%.

Geobacter
Systematik
Domäne: Bakterien (Bacteria)
Abteilung: Proteobacteria
Klasse: Deltaproteobacteria
Ordnung: Desulfuromonadales
Familie: Geobacteraceae
Gattung: Geobacter
Wissenschaftlicher Name
Geobacter
Lovley et al. 1995
Geobacter metallireducens
Systematik
Abteilung: Proteobacteria
Klasse: Deltaproteobacteria
Ordnung: Desulfuromonadales
Familie: Geobacteraceae
Gattung: Geobacter
Art: Geobacter metallireducens
Wissenschaftlicher Name
Geobacter metallireducens
Lovley et al. 1995

  1. a b D. R. Lovley, S. J. Giovannoni, D. C. White, J. E. Champine, E. J. Phillips, Y. A. Gorby, S. Goodwin: Geobacter metallireducens gen. nov. sp. nov., a microorganism capable of coupling the complete oxidation of organic compounds to the reduction of iron and other metals. In: Archives of microbiology. Band 159, Nummer 4, 1993, S. 336–344, PMID 8387263.
  2. a b c IUMS: Validation of the Publication of New Names and New Combinations Previously Effectively Published Outside the IJSB: List No. 54. In: International Journal of Systematic Bacteriology. 45, 1995, S. 619, doi:10.1099/00207713-45-3-619.
  3. D. R. Lovley, E. J. Phillips: Novel mode of microbial energy metabolism: organic carbon oxidation coupled to dissimilatory reduction of iron or manganese. In: Applied and Environmental Microbiology. Band 54, Nummer 6, Juni 1988, S. 1472–1480, PMID 16347658, PMC 202682 (freier Volltext).
  4. D. R. Lovley, D. J. Lonergan: Anaerobic Oxidation of Toluene, Phenol, and p-Cresol by the Dissimilatory Iron-Reducing Organism, GS-15. In: Applied and Environmental Microbiology. Band 56, Nummer 6, Juni 1990, S. 1858–1864, PMID 16348226, PMC 184522 (freier Volltext).
  5. D. R. Lovley: Dissimilatory Fe(III) and Mn(IV) reduction. In: Microbiological reviews. Band 55, Nummer 2, Juni 1991, S. 259–287, PMID 1886521, PMC 372814 (freier Volltext) (Review).
  6. Derek R. Lovley: Dissimilatory Metal Reduction. In: Annual Review of Microbiology. 47, 1993, S. 263, doi:10.1146/annurev.mi.47.100193.001403.
  7. a b F. Caccavo, D. J. Lonergan, D. R. Lovley, M. Davis, J. F. Stolz, M. J. McInerney: Geobacter sulfurreducens sp. nov., a hydrogen- and acetate-oxidizing dissimilatory metal-reducing microorganism. In: Applied and Environmental Microbiology. Band 60, Nummer 10, Oktober 1994, S. 3752–3759, PMID 7527204, PMC 201883 (freier Volltext).
  8. D. R. Lovley: Bioremediation of organic and metal contaminants with dissimilatory metal reduction. In: Journal of Industrial Microbiology. Band 14, Nr. 2, Februar 1995, ISSN 0169-4146, S. 85–93, PMID 7766214.
  9. S. Gaspard, F. Vazquez, C. Holliger: Localization and solubilization of the Iron(III) reductase of geobacter sulfurreducens. In: Applied and Environmental Microbiology. Band 64, Nr. 9, September 1998, ISSN 1098-5336, S. 3188–3194, PMID 9726858, PMC 106708 (freier Volltext).
  10. S. Seeliger, R. Cord-Ruwisch, B. Schink: A periplasmic and extracellular c-type cytochrome of Geobacter sulfurreducens acts as a ferric iron reductase and as an electron carrier to other acceptors or to partner bacteria. In: Journal of Bacteriology. Band 180, Nr. 14, Juli 1998, ISSN 0021-9193, S. 3686–3691, PMID 9658015, PMC 107340 (freier Volltext).
  11. K. L. Straub, M. Hanzlik, B. E. Buchholz-Cleven: The use of biologically produced ferrihydrite for the isolation of novel iron-reducing bacteria. In: Systematic and Applied Microbiology. Band 21, Nr. 3, August 1998, ISSN 0723-2020, S. 442–449, doi:10.1016/S0723-2020(98)80054-4, PMID 9779609.
  12. E. Afkar, Y. Fukumori: Purification and characterization of triheme cytochrome c7 from the metal-reducing bacterium, Geobacter metallireducens. In: FEMS microbiology letters. Band 175, Nr. 2, 15. Juni 1999, ISSN 0378-1097, S. 205–210, doi:10.1111/j.1574-6968.1999.tb13621.x, PMID 10386369.
  13. V. K. Bhupathiraju, M. Hernandez, D. Landfear, L. Alvarez-Cohen: Application of a tetrazolium dye as an indicator of viability in anaerobic bacteria. In: Journal of Microbiological Methods. Band 37, Nr. 3, September 1999, ISSN 0167-7012, S. 231–243, PMID 10480267.
  14. D. P. Chandler, B. L. Schuck, F. J. Brockman, C. J. Bruckner-Lea: Automated nucleic acid isolation and purification from soil extracts using renewable affinity microcolumns in a sequential injection system. In: Talanta. Band 49, Nr. 5, 9. August 1999, ISSN 0039-9140, S. 969–983, PMID 18967673.
  15. J. R. Lloyd, E. L. Blunt-Harris, D. R. Lovley: The periplasmic 9.6-kilodalton c-type cytochrome of Geobacter sulfurreducens is not an electron shuttle to Fe(III). In: Journal of Bacteriology. Band 181, Nr. 24, Dezember 1999, ISSN 0021-9193, S. 7647–7649, PMID 10601229, PMC 94229 (freier Volltext).
  16. D. R. Lovley, E. L. Blunt-Harris: Role of humic-bound iron as an electron transfer agent in dissimilatory Fe(III) reduction. In: Applied and Environmental Microbiology. Band 65, Nr. 9, September 1999, ISSN 0099-2240, S. 4252–4254, PMID 10473447, PMC 99772 (freier Volltext).
  17. D. R. Lovley, J. L. Fraga, J. D. Coates, E. L. Blunt-Harris: Humics as an electron donor for anaerobic respiration. In: Environmental Microbiology. Band 1, Nr. 1, Februar 1999, ISSN 1462-2912, S. 89–98, PMID 11207721.
  18. F. Martínez Murillo, T. Gugliuzza, J. Senko, P. Basu, J. F. Stolz: A heme-C-containing enzyme complex that exhibits nitrate and nitrite reductase activity from the dissimilatory iron-reducing bacterium Geobacter metallireducens. In: Archives of Microbiology. Band 172, Nr. 5, November 1999, ISSN 0302-8933, S. 313–320, PMID 10550473.
  19. R. U. Meckenstock: Fermentative toluene degradation in anaerobic defined syntrophic cocultures. In: FEMS microbiology letters. Band 177, Nr. 1, 1. August 1999, ISSN 0378-1097, S. 67–73, doi:10.1111/j.1574-6968.1999.tb13715.x, PMID 10436924.
  20. R. U. Meckenstock, B. Morasch, R. Warthmann, B. Schink, E. Annweiler: 13C/12C isotope fractionation of aromatic hydrocarbons during microbial degradation. In: Environmental Microbiology. Band 1, Nr. 5, Oktober 1999, ISSN 1462-2912, S. 409–414, PMID 11207760.
  21. O. Mikoulinskaia, V. Akimenko, A. Galouchko, R. K. Thauer, R. Hedderich: Cytochrome c-dependent methacrylate reductase from Geobacter sulfurreducens AM-1. In: European Journal of Biochemistry. Band 263, Nr. 2, Juli 1999, ISSN 0014-2956, S. 346–352, PMID 10406941.
  22. J. N. Rooney-Varga, R. T. Anderson, J. L. Fraga, D. Ringelberg, D. R. Lovley: Microbial communities associated with anaerobic benzene degradation in a petroleum-contaminated aquifer. In: Applied and Environmental Microbiology. Band 65, Nr. 7, Juli 1999, ISSN 0099-2240, S. 3056–3063, PMID 10388703, PMC 91456 (freier Volltext).
  23. D. A. Bazylinski, A. J. Dean, D. Schüler, E. J. Phillips, D. R. Lovley: N2-dependent growth and nitrogenase activity in the metal-metabolizing bacteria, Geobacter and Magnetospirillum species. In: Environmental Microbiology. Band 2, Nr. 3, Juni 2000, ISSN 1462-2912, S. 266–273, PMID 11200427.
  24. A. S. Galushko, B. Schink: Oxidation of acetate through reactions of the citric acid cycle by Geobacter sulfurreducens in pure culture and in syntrophic coculture. In: Archives of Microbiology. Band 174, Nr. 5, November 2000, ISSN 0302-8933, S. 314–321, PMID 11131021.
  25. J. R. Lloyd, V. A. Sole, C. V. Van Praagh, D. R. Lovley: Direct and Fe(II)-mediated reduction of technetium by Fe(III)-reducing bacteria. In: Applied and Environmental Microbiology. Band 66, Nr. 9, September 2000, ISSN 0099-2240, S. 3743–3749, PMID 10966385, PMC 92215 (freier Volltext).
  26. O. L. Snoeyenbos-West, K. P. Nevin, R. T. Anderson, D. R. Lovley: Enrichment of Geobacter Species in Response to Stimulation of Fe(III) Reduction in Sandy Aquifer Sediments. In: Microbial Ecology. Band 39, Nr. 2, Februar 2000, ISSN 1432-184X, S. 153–167, PMID 10833228.
  27. T. S. Magnuson, A. L. Hodges-Myerson, D. R. Lovley: Characterization of a membrane-bound NADH-dependent Fe(3+) reductase from the dissimilatory Fe(3+)-reducing bacterium Geobacter sulfurreducens. In: FEMS microbiology letters. Band 185, Nr. 2, 15. April 2000, ISSN 0378-1097, S. 205–211, doi:10.1111/j.1574-6968.2000.tb09063.x, PMID 10754249.
  28. K. P. Nevin, D. R. Lovley: Lack of production of electron-shuttling compounds or solubilization of Fe(III) during reduction of insoluble Fe(III) oxide by Geobacter metallireducens. In: Applied and Environmental Microbiology. Band 66, Nr. 5, Mai 2000, ISSN 0099-2240, S. 2248–2251, PMID 10788411, PMC 101484 (freier Volltext).
  29. Ling-Yun Ding, Yao-Yu Zhang, Li-Juan Zhang, Fang Fang, Ning-Ning He: Mercury methylation by Geobacter metallireducens GS-15 in the presence of Skeletonema costatum. In: The Science of the Total Environment. Band 671, 2019, ISSN 1879-1026, S. 208–214, doi:10.1016/j.scitotenv.2019.03.222, PMID 30928750.
  30. Simona G. Huwiler, Claudia Löffler, Sebastian E. L. Anselmann, Hans-Joachim Stärk, Martin von Bergen: One-megadalton metalloenzyme complex in Geobacter metallireducens involved in benzene ring reduction beyond the biological redox window. In: Proceedings of the National Academy of Sciences of the United States of America. Band 116, Nr. 6, 2. Mai 2019, ISSN 1091-6490, S. 2259–2264, doi:10.1073/pnas.1819636116, PMID 30674680, PMC 6369795 (freier Volltext).
  31. Marisa R. Ferreira, Joana M. Dantas, Carlos A. Salgueiro: The triheme cytochrome PpcF from Geobacter metallireducens exhibits distinct redox properties. In: FEBS open bio. Band 8, Nr. 12, Dezember 2018, ISSN 2211-5463, S. 1897–1910, doi:10.1002/2211-5463.12505, PMID 30524941, PMC 6275270 (freier Volltext).
  32. Akhilesh Kumar Chaurasia, Pier-Luc Tremblay, Dawn E. Holmes, Tian Zhang: Genetic evidence that the degradation of para-cresol by Geobacter metallireducens is catalyzed by the periplasmic para-cresol methylhydroxylase. In: FEMS microbiology letters. Band 362, Nr. 20, Oktober 2015, ISSN 1574-6968, doi:10.1093/femsle/fnv145, PMID 26316547.
  33. Tian Zhang, Pier-Luc Tremblay, Akhilesh K. Chaurasia, Jessica A. Smith, Timothy S. Bain: Identification of genes specifically required for the anaerobic metabolism of benzene in Geobacter metallireducens. In: Frontiers in Microbiology. Band 5, 2014, ISSN 1664-302X, S. 245, doi:10.3389/fmicb.2014.00245, PMID 24904558, PMC 4033198 (freier Volltext).
  34. Yanfeng Zhang, Yi Zheng, Ling Qin, Shihua Wang, Garry W. Buchko: Structural characterization of a β-hydroxyacid dehydrogenase from Geobacter sulfurreducens and Geobacter metallireducens with succinic semialdehyde reductase activity. In: Biochimie. Band 104, September 2014, ISSN 1638-6183, S. 61–69, doi:10.1016/j.biochi.2014.05.002, PMID 24878278.
  35. Amelia-Elena Rotaru, Pravin Malla Shrestha, Fanghua Liu, Beatrice Markovaite, Shanshan Chen: Direct interspecies electron transfer between Geobacter metallireducens and Methanosarcina barkeri. In: Applied and Environmental Microbiology. Band 80, Nr. 15, August 2014, ISSN 1098-5336, S. 4599–4605, doi:10.1128/AEM.00895-14, PMID 24837373, PMC 4148795 (freier Volltext).
  36. Adam M. Feist, Harish Nagarajan, Amelia-Elena Rotaru, Pier-Luc Tremblay, Tian Zhang: Constraint-based modeling of carbon fixation and the energetics of electron transfer in Geobacter metallireducens. In: PLoS computational biology. Band 10, Nr. 4, April 2014, ISSN 1553-7358, S. e1003575, doi:10.1371/journal.pcbi.1003575, PMID 24762737, PMC 3998878 (freier Volltext).
  37. Sviatlana Marozava, Wilfred F. M. Röling, Jana Seifert, Robert Küffner, Martin von Bergen: Physiology of Geobacter metallireducens under excess and limitation of electron donors. Part II. Mimicking environmental conditions during cultivation in retentostats. In: Systematic and Applied Microbiology. Band 37, Nr. 4, Juni 2014, ISSN 1618-0984, S. 287–295, doi:10.1016/j.syapm.2014.02.005, PMID 24736031.
  38. Sviatlana Marozava, Wilfred F. M. Röling, Jana Seifert, Robert Küffner, Martin von Bergen: Physiology of Geobacter metallireducens under excess and limitation of electron donors. Part I. Batch cultivation with excess of carbon sources. In: Systematic and Applied Microbiology. Band 37, Nr. 4, Juni 2014, ISSN 1618-0984, S. 277–286, doi:10.1016/j.syapm.2014.02.004, PMID 24731775.
  39. Tian Zhang, Pier-Luc Tremblay, Akhilesh Kumar Chaurasia, Jessica A. Smith, Timothy S. Bain: Anaerobic benzene oxidation via phenol in Geobacter metallireducens. In: Applied and Environmental Microbiology. Band 79, Nr. 24, Dezember 2013, ISSN 1098-5336, S. 7800–7806, doi:10.1128/AEM.03134-13, PMID 24096430, PMC 3837793 (freier Volltext).
  40. Xinyu Zhang, Xiaofeng Ye, Kevin T. Finneran, Julie L. Zilles, Eberhard Morgenroth: Interactions between Clostridium beijerinckii and Geobacter metallireducens in co-culture fermentation with anthrahydroquinone-2, 6-disulfonate (AH2QDS) for enhanced biohydrogen production from xylose. In: Biotechnology and Bioengineering. Band 110, Nr. 1, Januar 2013, ISSN 1097-0290, S. 164–172, doi:10.1002/bit.24627, PMID 22886601.
  41. Kathleen M. Schleinitz, Sirko Schmeling, Nico Jehmlich, Martin von Bergen, Hauke Harms: Phenol degradation in the strictly anaerobic iron-reducing bacterium Geobacter metallireducens GS-15. In: Applied and Environmental Microbiology. Band 75, Nr. 12, Juni 2009, ISSN 1098-5336, S. 3912–3919, doi:10.1128/AEM.01525-08, PMID 19376902, PMC 2698347 (freier Volltext).
  42. Gary A. Icopini, Joe G. Lack, Larry E. Hersman, Mary P. Neu, Hakim Boukhalfa: Plutonium(V/VI) Reduction by the Metal-Reducing Bacteria Geobacter metallireducens GS-15 and Shewanella oneidensis MR-1. In: Applied and Environmental Microbiology. Band 75, Nr. 11, Juni 2009, ISSN 1098-5336, S. 3641–3647, doi:10.1128/AEM.00022-09, PMID 19363069, PMC 2687282 (freier Volltext).
  43. Nicole B. Tobler, Thomas B. Hofstetter, René P. Schwarzenbach: Carbon and hydrogen isotope fractionation during anaerobic toluene oxidation by Geobacter metallireducens with different Fe(III) phases as terminal electron acceptors. In: Environmental Science & Technology. Band 42, Nr. 21, 1. November 2008, ISSN 0013-936X, S. 7786–7792, PMID 19031861.
  44. Jörg Johannes, Alexander Bluschke, Nico Jehmlich, Martin von Bergen, Matthias Boll: Purification and characterization of active-site components of the putative p-cresol methylhydroxylase membrane complex from Geobacter metallireducens. In: Journal of Bacteriology. Band 190, Nr. 19, Oktober 2008, ISSN 1098-5530, S. 6493–6500, doi:10.1128/JB.00790-08, PMID 18658262, PMC 2566014 (freier Volltext).
  45. Man Jae Kwon, Kevin Thomas Finneran: Biotransformation products and mineralization potential for hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) in abiotic versus biological degradation pathways with anthraquinone-2,6-disulfonate (AQDS) and Geobacter metallireducens. In: Biodegradation. Band 19, Nr. 5, September 2008, ISSN 0923-9820, S. 705–715, doi:10.1007/s10532-008-9175-5, PMID 18239998.
  46. Hakim Boukhalfa, Gary A. Icopini, Sean D. Reilly, Mary P. Neu: Plutonium(IV) reduction by the metal-reducing bacteria Geobacter metallireducens GS15 and Shewanella oneidensis MR1. In: Applied and Environmental Microbiology. Band 73, Nr. 18, September 2007, ISSN 0099-2240, S. 5897–5903, doi:10.1128/AEM.00747-07, PMID 17644643, PMC 2074912 (freier Volltext).
  47. Franziska Peters, Yoshifumi Shinoda, Michael J. McInerney, Matthias Boll: Cyclohexa-1,5-diene-1-carbonyl-coenzyme A (CoA) hydratases of Geobacter metallireducens and Syntrophus aciditrophicus: Evidence for a common benzoyl-CoA degradation pathway in facultative and strict anaerobes. In: Journal of Bacteriology. Band 189, Nr. 3, Februar 2007, ISSN 0021-9193, S. 1055–1060, doi:10.1128/JB.01467-06, PMID 17122342, PMC 1797300 (freier Volltext).
  48. Michael K. Jahn, Stefan B. Haderlein, Rainer U. Meckenstock: Reduction of Prussian Blue by the two iron-reducing microorganisms Geobacter metallireducens and Shewanella alga. In: Environmental Microbiology. Band 8, Nr. 2, Februar 2006, ISSN 1462-2912, S. 362–367, doi:10.1111/j.1462-2920.2005.00902.x, PMID 16423022.
  49. Hojatollah Vali, Benjamin Weiss, Yi-Liang Li, S. Kelly Sears, Soon Sam Kim: Formation of tabular single-domain magnetite induced by Geobacter metallireducens GS-15. In: Proceedings of the National Academy of Sciences of the United States of America. Band 101, Nr. 46, 16. November 2004, ISSN 0027-8424, S. 16121–16126, doi:10.1073/pnas.0404040101, PMID 15525704, PMC 528942 (freier Volltext).
  50. Irene Ortiz-Bernad, Robert T. Anderson, Helen A. Vrionis, Derek R. Lovley: Vanadium respiration by Geobacter metallireducens: novel strategy for in situ removal of vanadium from groundwater. In: Applied and Environmental Microbiology. Band 70, Nr. 5, Mai 2004, ISSN 0099-2240, S. 3091–3095, doi:10.1128/AEM.70.5.3091-3095.2004, PMID 15128571, PMC 404428 (freier Volltext).
  51. Staci R. Kane, Harry R. Beller, Tina C. Legler, Robert T. Anderson: Biochemical and genetic evidence of benzylsuccinate synthase in toluene-degrading, ferric iron-reducing Geobacter metallireducens. In: Biodegradation. Band 13, Nr. 2, 2002, ISSN 0923-9820, S. 149–154, PMID 12449317.
  52. Susan E. Childers, Stacy Ciufo, Derek R. Lovley: Geobacter metallireducens accesses insoluble Fe(III) oxide by chemotaxis. In: Nature. Band 416, Nr. 6882, 18. April 2002, ISSN 0028-0836, S. 767–769, doi:10.1038/416767a, PMID 11961561.
  53. Derek R. Lovley, John F. Stolz, Gordon L. Nord, Elizabeth J. P. Phillips: Anaerobic production of magnetite by a dissimilatory iron-reducing microorganism. In: Nature. 330, 1987, S. 252, doi:10.1038/330252a0.
  54. D. E. Holmes, A. E. Rotaru, T. Ueki, P. M. Shrestha, J. G. Ferry, D. R. Lovley: Electron and Proton Flux for Carbon Dioxide Reduction in Methanosarcina barkeri During Direct Interspecies Electron Transfer. In: Frontiers in Microbiology. Band 9, 2018, S. 3109, doi:10.3389/fmicb.2018.03109, PMID 30631315, PMC 6315138 (freier Volltext).
  55. a b D. R. Lovley, S. J. Giovannoni, D. C. White, J. E. Champine, E. J. Phillips, Y. A. Gorby, S. Goodwin: Geobacter metallireducens gen. nov. sp. nov., a microorganism capable of coupling the complete oxidation of organic compounds to the reduction of iron and other metals. In: Archives of microbiology. Band 159, Nummer 4, 1993, S. 336–344, PMID 8387263.
  56. a b c D. R. Lovley, E. J. Phillips: Novel mode of microbial energy metabolism: organic carbon oxidation coupled to dissimilatory reduction of iron or manganese. In: Applied and Environmental Microbiology. Band 54, Nr. 6, Juni 1988, ISSN 0099-2240, S. 1472–1480, PMID 16347658, PMC 202682 (freier Volltext).
  57. a b F. Caccavo, D. J. Lonergan, D. R. Lovley, M. Davis, J. F. Stolz, M. J. McInerney: Geobacter sulfurreducens sp. nov., a hydrogen- and acetate-oxidizing dissimilatory metal-reducing microorganism. In: Applied and environmental microbiology. Band 60, Nummer 10, Oktober 1994, S. 3752–3759, PMID 7527204, PMC 201883 (freier Volltext).
  58. a b Youlboong Sung, Kelly E. Fletcher, Kirsti M. Ritalahti, Robert P. Apkarian, Natalia Ramos-Hernández: Geobacter lovleyi sp. nov. strain SZ, a novel metal-reducing and tetrachloroethene-dechlorinating bacterium. In: Applied and Environmental Microbiology. Band 72, Nr. 4, 2006-4, ISSN 0099-2240, S. 2775–2782, doi:10.1128/AEM.72.4.2775-2782.2006, PMID 16597982, PMC PMCPMC1448980 (nih.gov [abgerufen am 9. Mai 2019]).
  59. a b c Dan Sun, Aijie Wang, Shaoan Cheng, Matthew Yates, Bruce E. Logan: Geobacter anodireducens sp. nov., an exoelectrogenic microbe in bioelectrochemical systems. In: International Journal of Systematic and Evolutionary Microbiology. Band 64, Pt 10, Oktober 2014, ISSN 1466-5034, S. 3485–3491, doi:10.1099/ijs.0.061598-0, PMID 25052395.
  60. a b Evgenya S. Shelobolina, Helen A. Vrionis, Robert H. Findlay, Derek R. Lovley: Geobacter uraniireducens sp. nov., isolated from subsurface sediment undergoing uranium bioremediation. In: International Journal of Systematic and Evolutionary Microbiology. Band 58, Pt 5, Mai 2008, ISSN 1466-5026, S. 1075–1078, doi:10.1099/ijs.0.65377-0, PMID 18450691.
  61. a b Umakanth Kunapuli, Michael K. Jahn, Tillmann Lueders, Roland Geyer, Hermann J. Heipieper: Desulfitobacterium aromaticivorans sp. nov. and Geobacter toluenoxydans sp. nov., iron-reducing bacteria capable of anaerobic degradation of monoaromatic hydrocarbons. In: International Journal of Systematic and Evolutionary Microbiology. Band 60, Pt 3, März 2010, ISSN 1466-5026, S. 686–695, doi:10.1099/ijs.0.003525-0, PMID 19656942.
  62. a b c d Kelly P. Nevin, Dawn E. Holmes, Trevor L. Woodard, Erich S. Hinlein, David W. Ostendorf: Geobacter bemidjiensis sp. nov. and Geobacter psychrophilus sp. nov., two novel Fe(III)-reducing subsurface isolates. In: International Journal of Systematic and Evolutionary Microbiology. Band 55, Pt 4, Juli 2005, ISSN 1466-5026, S. 1667–1674, doi:10.1099/ijs.0.63417-0, PMID 16014499.
  63. a b c d K. L. Straub, B. E. Buchholz-Cleven: Geobacter bremensis sp. nov. and Geobacter pelophilus sp. nov., two dissimilatory ferric-iron-reducing bacteria. In: International Journal of Systematic and Evolutionary Microbiology. Band 51, Pt 5, September 2001, ISSN 1466-5026, doi:10.1099/00207713-51-5-1805, PMID 11594612.
  64. a b c d e f J. D. Coates, V. K. Bhupathiraju, L. A. Achenbach, M. J. Mclnerney, D. R. Lovley: Geobacter hydrogenophilus, Geobacter chapellei and Geobacter grbiciae, three new, strictly anaerobic, dissimilatory Fe(III)-reducers. In: International Journal of Systematic and Evolutionary Microbiology. Band 51, Pt 2, März 2001, ISSN 1466-5026, S. 581–588, doi:10.1099/00207713-51-2-581, PMID 11321104.


Referenzfehler: <ref>-Tags existieren für die Gruppe A, jedoch wurde kein dazugehöriges <references group="A" />-Tag gefunden.