Benutzer:Norbert Dragon/Erhaltungssatz
Als Erhaltungssatz bezeichnet man in der Physik die Aussage, dass eine bestimmte Größe, Erhaltungsgröße genannt, sich nicht mit der Zeit ändert.
Erhaltungsgrößen sind nichtkonstante Funktionen derjenigen Größen des betrachteten physikalischen Systems, die man beim Start mit unterschiedlichen Werten vorgeben kann, beispielsweise Orte und Geschwindigkeiten von Teilchen oder Feldstärken. Diese Größen ändern sich nach dem Start. Erhaltungsgrößen sind solche Funktionen dieser sich ändernden Größen, die sich mit der Zeit nicht ändern, sondern ihren Startwert behalten. Beispielsweise hängt die Energie eines Teilchens im Potential Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle V(x)}
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle E(x,v) = \frac{1}{2}\, m \,v^2 + V(x)}
von der Geschwindigkeit Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle v(t)} ab (die kann sich mit der Zeit Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle t} ändern) und vom Ort Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle x(t)} ab (der ändert sich ebenfalls normalerweise mit der Zeit Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle t} ) aber
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \frac{1}{2}\, m\, v^2(t) + V(x(t)) = \frac{1}{2}\, m\, v^2(0) + V(x(0))}
hat den Wert, den es beim Start hatte.
Erhaltungssätze sind nach dem Noether-Theorem mit kontinuierlichen Symmetrien der Wirkung verknüpft.
Besitzt das betrachtete physikalische System genügend viele Erhaltungsgrößen, so lässt sich die zeitliche Entwicklung durch Integrale angeben.
Erhaltungsgrößen schränken die denkbare Bewegung des physikalischen Systems ein. Beispielsweise folgt aus der Energie- und Impulserhaltung bei der Compton-Streuung, wie die Energie des gestreuten Photons mit seinem Streuwinkel zusammenhängt und (abhängig vom Streuwinkel des Photons, der nicht festgelegt wird) mit welcher Energie und in welche Richtung sich das ursprünglich ruhende Elektron nach der Streuung bewegt.
Viele Erhaltungsgrößen, beispielsweise der Gesamtimpuls, sind additiv. In Zwei- und Mehrteilchensystemen ist der Wert der additiven Erhaltungsgröße die Summe der Einzelwerte. Der Gesamtimpuls, beispielsweise, ist die Summe der einzelnen Impulse. Diese scheinbare Selbstverständlichkeit gilt nur für Teilchen, die nicht (mehr) wechselwirken. Während der Wechselwirkung können Felder Energie und Impuls aufnehmen und an andere Teilchen übergeben.
Beispiele
- Energieerhaltung: Die Gesamtenergie bleibt konstant (zugehörige Symmetrie: die physikalischen Abläufe hängen nicht von der Wahl des Zeitnullpunktes ab, Homogenität der Zeit).
- Impulserhaltung: Die Vektor-Summe aller Impulse bleibt konstant (zugehörige Symmetrie: Die physikalischen Abläufe hängen nicht von der Wahl des Ursprungs ab, Homogenität des Raumes).
- Drehimpulserhaltung: Die Summe aller Drehimpulse bleibt konstant (zugehörige Symmetrie: Die physikalischen Abläufe hängen nicht von der Wahl der Bezugsrichtungen ab, Isotropie des Raumes).
- Ladungserhaltung: Die (elektrische, schwache, Farb-) Ladung bleibt konstant (zugehörige Symmetrie: Die Phase des geladenen Teilchens kann beliebig gewählt werden). Ist eine Ladung in einem Gebiet als Integral einer Ladungsdichte über dieses Gebiet gegeben, so ist sie eine Erhaltungsgröße, wenn sie zusammen mit einer Stromdichte Fehler beim Parsen (Konvertierungsfehler. Der Server („https://wikimedia.org/api/rest_“) hat berichtet: „Cannot get mml. Server problem.“): {\displaystyle \mathbf {j} (t,\mathbf {x} )} die Kontinuitätsgleichung
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \frac{\partial}{\partial t} \rho + \nabla \cdot \mathbf{j}=0}
- erfüllt. Dann kann sich die Ladung im Gebiet mit der Zeit nur dadurch ändern, dass Ströme durch die Oberfläche fließen.
- Baryonenzahlerhaltung und Leptonenzahlerhaltung: Sowohl die Anzahl der Baryonen (aus Quarks zusammengesetzte Fermionen) in einem System, als auch die Anzahl der Leptonen (z.B. Elektronen, Neutrinos) in einem System bleibt erhalten. Dabei haben Teilchen wie Protonen positive und Antiteilchen negative Baryonzahl.
- Die Erhaltung der Baryonen- und Leptonenzahl beruht auf einer Symmetrie des Standardmodells der fundamentalen Wechselwirkungen, die in Vorschlägen für eine Große Vereinheitlichte Theorie verletzt ist. Diese vereinheitlichten Theorien sagen die Verletzung der Baryonzahlerhaltung durch den Zerfall des Protons in Leptonen voraus, jedoch mit extrem langer Halbwertszeit. Trotz intensiver Suche ist bis heute Protonenzerfall nicht beobachtet worden.
- Massenerhaltung: Kein Erhaltungssatz im eigentlichen Sinne ist die Massenerhaltung: Bei Zerfällen von Atomkernen wird die Masse nicht erhalten. Die Masse des Ausgangsteilchens ist größer als die Summe der Massen der Tochterteilchen. Bei stabilen Teilchen hingegen ist die Masse erhalten. Da sie aber nicht von den frei wählbaren, unterschiedlichen Startwerten abhängt, ist ihre Erhaltung eine Selbstverständlichkeit. Zur Massenerhaltung in der Strömungsmechanik gibt es keine zugehörige Symmetrie, da die Gleichungen der Strömungsmechanik nicht aus einem Wirkungsprinzip stammen.
Die Bewegung eines physikalischen Systems lässt sich genau dann durch Integrale angeben, wenn es gleichviele Erhaltungsgrößen wie Freiheitsgrade besitzt. Dabei müssen die zu den Erhaltungsgrößen gehörigen Symmetrietransformationen die Bedingung erfüllen, dass es nicht auf die Reihenfolge ankommt, wenn man sie hintereinander ausführt.
Im einfachsten Fall, energieerhaltende Bewegung eines Freiheitsgrades Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle x} , löst man den Energiesatz
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle E = \frac{1}{2}\, m\, v^2 + V(x)}
nach der Geschwindigkeit auf
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle v = \frac{\mathrm{d}x}{\mathrm{d}t}= \pm \sqrt{\frac{2}{m}\,(E-V)}\,.}
Die Ableitung der Umkehrfunktion Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle t(x)} , die angibt, zu welcher Zeit das Teilchen den Ort Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle x} durchläuft, ist der Kehrwert,
Integriert man diese Gleichung über Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle x} von einer unteren Grenze Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle x_0} bis zu einer frei wählbaren oberen Grenze Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \bar{x}} , so ergibt sich
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \int_{x_0}^{\bar{x}}\mathrm{d}x \frac{\mathrm{d}t}{\mathrm{d}x}= t(\bar{x})-t(x_0) = \pm \int_{x_0}^{\bar{x}}\mathrm{d}x\left(\sqrt{\frac{2}{m}(E-V(x))}\right)^{-1}\,.}
Es liegt also die Umkehrfunktion Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle t(\bar{x})} als Funktion der oberen Grenze eines Integrals über die gegebene Funktion Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \left(\sqrt{\frac{2}{m}(E-V(x))}\right)^{-1}} fest. Dabei ist die Startzeit Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle t(x_0)} und die anfängliche Energie frei wählbar.