Benutzer:STHD1812/Erstpreisauktion
Die Erstpreisauktion (auch Erstpreisausschreibung, engl. first price sealed bid auction) ist eine Auktion aus der Auktionstheorie, bei der die Bieter einmalig und verdeckt ihre Gebote abgeben. Der Bieter mit dem höchsten Gebot gewinnt die Auktion und muss sein eigenes, das höchste Gebot bezahlen.
Im Gegensatz zur Erstpreisauktion steht die Zweitpreisauktion, bei der die Bieter zwar auch ihre Gebote einmalig und verdeckt abgeben und der Bieter mit dem höchsten Gebot die Auktion gewinnt, jedoch muss er nur das zweithöchste Gebot bezahlen.
Ist das zu versteigernde Objekt von rein privatem Wert und die Bieter risikoneutral, so ist die Erstpreisauktion strategisch äquivalent zur Holländischen Auktion, während die Zweitpreisauktion zur Englischen Auktion strategisch äquivalent ist.[1]
Auktionsgeschichte
Erste Auktionen tauchen erstmals in griechischen Dokumenten 500 v. Chr. auf. Zu dieser Zeit wurden Frauen in einer Art Holländischen Auktion versteigert. Während sehr hübsche Frauen relativ hohe Gebote bekamen, so musste der Verkäufer bei weniger attraktiven Frauen eine Mitgift oder andere Geldangebote dazu geben, um die Auktion erfolgreich abzuschließen. Tatsächlich war es aber verboten, Frauen außerhalb einer Auktion zu verkaufen.[2]
Zur Zeit Jesus Christus waren Auktionen im Römischen Kaiserreich beliebt, um Teile des Familienanwesens oder auch Kriegsbeute zu verkaufen. So versteigerte beispielsweise der römische Kaiser Mark Aurel Möbel, um seine Schulden zu begleichen.[2]
Auktionen in den Vereinigten Staaten von Amerika lassen sich bis zum Anfang des 17. Jahrhunderts zurückverfolgen, als die ersten Pilgerväter dorthin übersiedelten. Über Auktionen wurden Pflanzen, Importe, Dachschindeln, Tiere, Werkzeuge, Tabak, Sklaven und sogar ganze Farmen verkauft. Der Verkauf über Auktionen war der schnellste und effizienteste Weg aus Besitztümern Geld zu machen.[2]
Zur Zeit des Bürgerkrieges in den USA entstand der auch heute noch teilweise gebrauchte Name "Colonel" für einen Auktionator: Zu dieser Zeit verkauften üblicherweise die Colonels des Militärs Kriegsbeute.[2]
In Europa tauchen erstmals Aufzeichnungen über Auktionen im "Oxford English Dictionary" im Jahre 1595 auf. Im späten 17. Jahrhundert schrieb die London Gazette über Versteigerungen von Kunst in Kaffeehäusern und Wirtshäusern. Die berühmten Auktionshäuser Sotheby’s und Christie’s wurden 1744 bzw. 1766 gegründet.[3]
Erste Auktionen in den Niederlanden finden sich im Jahre 1887 um Früchte und Gemüse zu verkaufen. Zur gleichen Zeit verkauften Fischer in Deutschland ihren Fang über Auktionen.[3]
Auf Fischmärkten in Japan wurde früher über die Erstpreisauktion getrockneter Fisch versteigert. Das Verfahren war wie folgt: Die Bieter gaben ihre Gebote in einer Box auf einem Zettel ab. Nach einer vorher festgelegten Zeit öffnete der Auktionator die Box und verkündete den Gewinner.[4]
Heute verwenden viele Zentralbanken wie die deutsche Bundesbank, die Europäische Zentralbank oder auch das Finanzministerium der Vereinigten Staaten von Amerika die Erstpreisauktion, um Staatsanleihen zu vergeben. Hierbei wird meist das sogenannte Multi-Preis-Auktionsverfahren (engl. discriminatory auction) verwendet, bei dem es mehrere Zuschläge zu unterschiedlichen Zinssätzen geben kann.[5][6]
Zudem wird meist bei Vergabe von Bauaufträgen auch die Erstpreisauktion als Vergabeverfahren verwendet. Jedoch ist hier die Rolle von Käufer und Verkäufer vertauscht. Deshalb gewinnt der Bieter mit dem niedrigsten Gebot.[4]
Eine Variante der Erstpreisauktion ist die sogenannte "Schweizer Auktion": Diese Auktionsform wird auch bei der Vergabe von Bauaufträgen verwendet, jedoch mit dem Unterschied, dass der Gewinner der Auktion auch das ersteigerte Objekt ablehnen kann. Der Name kommt daher, dass die Schweizer Bauindustrie teilweise dieses Vergabeverfahren für Bauaufträge verwendet. Architekten bevorzugen diese Art von Auktion, da es bei Bauaufträgen immer wieder zu Änderungen des eigentlichen Auftrags kommt und es keinen Grund gibt, mit jemandem zu arbeiten, der die Arbeit nicht machen will.[4]
Optimale Bietstrategie für beliebig stetig verteilte Bewertungen
Die optimale Bietstrategie eines Bieters für beliebig stetig verteilte Bewertungen lautet, die erwartete höchste Bewertung aller anderen Bieter abzugeben, gegeben diese erwartete höchste Bewertung ist kleiner als die eigene Bewertung des Bieters.
Annahmen
- Es gibt Bieter für ein einzelnes Objekt. Jeder Bieter bewertet das zu versteigernde Objekt mit , also dem maximalen Betrag, den der Bieter bereit ist, für das Objekt zu bezahlen.
- Jede Bewertung ist identisch und unabhängig auf , wobei , verteilt mit entsprechender Verteilungsfunktion und der dazugehörigen Dichtefunktion .
- .
- Die Bieter sind risiko-neutral und das zu versteigernde Objekt ist von rein privatem Wert.
- Die Verteilungsfunktion und die Anzahl , der Bieter sind Common Knowledge, also jedem Bieter bekannt.
- Das Gleichgewicht ist ein symmetrisches Gleichgewicht, also jeder Bieter verfolgt die selbe Strategie: .
- Die Auszahlung des Bieters mit Bewertung des zu versteigernden Objektes und Gebot Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle b_i} ist
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle u(b_i,b_{-i},v_i)=\begin{cases} v_i-b_i & b_i>\max_{j\neq i} b_{j} \\ 0 & b_i<\max_{j\neq i} b_{j}\end{cases}.}
Herleitung der optimalen Bietstrategie
Sei Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle b_i} das Gebot des Spielers Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle i} . Es ist niemals optimal, ein Gebot Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle b_i>\beta(\overline{v})} zu wählen, da in diesem Fall der Bieter das Objekt auf jeden Fall bekommt, er aber durch Reduzierung seines Gebotes sich besser stellen kann, da er dann das Objekt trotzdem bekommt, aber weniger bezahlen muss. Daraus folgt, dass man nur den Fall Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle b_i\leq\beta(\overline{v})} betrachten muss. Zudem würde ein Bieter mit Bewertung Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle 0} niemals ein postives Gebot abgeben, da er dann ein Verlust machen würde, wenn er die Auktion gewinnen würde. Also gilt Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \beta(0)=0} .[7]
Bieter Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle i} bekommt das Objekt, wenn er das höchste Gebot abgibt, also Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \max_{j\neq i} \beta_{j}(v_j)<b_i} . Da Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \beta} monoton wachsend ist, gilt:
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \max_{j\neq i} \beta_{j}(v_j)=\beta_j(\max_{j\neq i} v_j)=\beta(Y_1)}
mit Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle Y_1} als höchste Bewertung der Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle n-1} übrigen Spieler.
Bieter Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle i} erhält den Zuschlag für das Objekt immer dann, wenn Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \beta(Y_1)<b_i\Longleftrightarrow Y_1<\beta^{-1}(b_i)} .
Seine erwartete Auszahlung ist nun
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle E[b_i,b^{\ast}_{-i},v_i]=G\left(\beta^{-1}(b_i)\right)\cdot (v_i-b_i)}
mit Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle G} Verteilungsfunktion von Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle Y_1} .
Maximierung der erwarteten Auszahlung über Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle b_i} führt zu
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \frac{\partial E[b_i,b^{\ast}_{-i},v_i]}{\partial b_i}=\frac{g\left(\beta^{-1}(b_i)\right)}{\beta'\left(\beta^{-1}(b_i)\right)}\cdot (v_i-b_i)-G\left(\beta^{-1}(b_i)\right)\overset{!}{=}0}
mit Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle g} Dichtefunktion von Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle Y_1} .
Da das Gleichgewicht symmetrisch ist (Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle b_i=\beta(v)} ), folgt nun folgende Differentialgleichung:
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle G(v)\beta '(v)+g(v)\beta(v)=vg(v)} oder
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \frac{d}{dv}\left(G(v)\beta (v)\right)=vg(v).}
Mit der Anfangswertbedingung Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \beta(0)=0} erhält man nun die optimale Bietstrategie:
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \beta(v)=\frac{1}{G(v)}\int_0^{v} yg(y)dy=E[Y_1|Y_1<v].}
Oder mit Hilfe von partieller Integration:
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \beta(v)=E[Y_1|Y_1<v]=v-\int_0^v \frac{G(y)}{G(v)}dy.}
Somit lautet die optimale Bietstrategie eines Bieters, die erwartete höchste Bewertung aller anderen Bieter abzugeben, gegeben diese höchste Bewertung ist niedriger als seine eigene Bewertung.
Erwarteter Erlös des Verkäufers
Der erwartete Erlös des Verkäufers ist die erwartete zweithöchste Bewertung aller Bieter.
Die erwartete Zahlung des Käufers mit dem höchsten Gebot ist
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle m(v)=G(v)\cdot E[Y_1|Y_1<v]=\int_0^{v} yg(y)dy.}
Die ex ante erwartete Zahlung des Käufers ist
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle E[m(v)]=\int_0^{\overline{v}}m(x)f(x)dx=\int_0^{\overline{v}}\left(\int_0^{v} yg(y)dy\right)f(x)dx=\int_0^{\overline{v}}\left(\int_y^{\overline{v}}f(x)dx\right)yg(y)dy=\int_0^{\overline{v}}y(1-F(y))g(y)dy.}
Der erwartete Erlös des Verkäufers ist nun
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle E[R]=n\cdot E[m(v)]=n\cdot \int_0^{\overline{v}}y(1-F(y))g(y)dy.}
Mit Hilfe der Ordnungsstatistiken ergibt sich nun für den erwartete Erlös des Verkäufers:
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle E[R]=E[Y_2]}
mit Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle Y_2} als zweithöchste Bewertung aller Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle n} Bieter. Der erwartete Erlös des Verkäufers ist gerade die erwartete zweithöchste Bewertung aller Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle n} Bieter.[8]
Erlösäquivalenz zur Zweitpreisauktion
Das Erlösäquivalenztheorem besagt, dass bei Güter mit rein privatem Wert und risikoneutralen Bietern der erwartete Erlös des Verkäufers in Erst-und Zweitpreisauktion der gleiche ist.[1]
Beispiel: Optimale Bietstrategie für gleichverteilte Bewertungen des zu versteigernden Objektes
Wenn die Bewertungen auf Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle [0,\overline{v}]} gleichverteilt sind, dann gilt für die zugehörige Dichtefunktion:
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle f(x)=\begin{cases}\frac{1}{\overline{v}} & x \in [0,\overline{v}] \\ 0 & x \notin[0,\overline{v}]\end{cases}.}
Daraus folgt für Verteilungsfunktion:
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle P(X\leq x)=F(x)=\int_{0}^{x}f(t)dt=\int_{0}^{x}\frac{1}{\overline{v}}dt=\left[\frac{1}{\overline{v}}t\right]_{0}^{x}=\begin{cases}\frac{1}{\overline{v}}x & x \in [0,\overline{v}] \\ 0 & x \notin[0,\overline{v}]\end{cases}.}
Für die Verteilung Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle G(v)} der höchsten Ordnungsstatistik der Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle n-1} übrigen Bieter gilt nun:
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle G(v)=\left[F(v)\right]^{n-1}=\left(\frac{1}{\overline{v}}v\right)^{n-1}}
und damit ergibt sich folgende optimale Bietstrategie:
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \beta(v)=v-\int_0^v \frac{G(y)}{G(v)}dy=v-\int_0^v \left(\frac{F(y)}{F(v)}\right)^{n-1}dy=\frac{n-1}{n}\cdot v.}
Insbesondere gilt:
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \frac{\partial\beta(v)}{\partial n}=\frac{1}{n^2}\cdot v>0, \quad \forall v>0,}
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \lim\limits_{n \to \infty}\beta(v)=\lim\limits_{n \to \infty}\frac{n-1}{n}\cdot v=v.}
Das Gebot ist streng monoton steigend in der Bieteranzahl und bei einer großen Bieteranzahl geht das Gebot gegen die eigene Bewertung Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle v} des Objektes und somit die Auszahlung gegen Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle 0} .[9]
Erweiterungen
Risiko-averse Bieter
Bei risiko-aversen Bietern kommt es zu höheren Gleichgewichtsgeboten als bei risiko-neutralen Bietern.
Jeder Bieter hat nun als Auszahlungsfunktion eine von-Neumann-Morgenstern Nutzenfunktion Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle u:\mathbb{R}\rightarrow \mathbb{R}_{+}} mit Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle u(0)=0} , Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle u' >0} und Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle u''<0} . Anstatt wie im Falle der Risikoneutralität die erwartete Auszahlung zu maximieren, wird nun der erwartete Nutzen maximiert. Die Gleichgewichtsstrategien sind durch eine wachsende und differenzierbare Funktion Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \gamma : [0,\overline{v}]\rightarrow \mathbb{R}} mit Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \gamma(0)=0} gegeben. Das Optimierungsproblem eines Bieters Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle i} mit Bewertung Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle v_i} ist demnach durch
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \max_{b_i\in [0, \overline{v}]} G(b_i)\cdot u(v_i-\gamma(b_i)).}
gegeben. Die Bedingung erster Ordnung lautet nun
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle g(b_i)\cdot u(v_i-\gamma(b_i))-G(b_i)\cdot \gamma '(b_i)\cdot u '(v_i-\gamma(b_i))\overset{!}{=}0.}
Im symmetrischen Gleichgewicht gilt Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle b_i=v} für alle Bieter Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle i} und somit:
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \gamma '(v)=\frac{u(v-\gamma(v))}{u'(v-\gamma(v))}\cdot\frac{g(v)}{G(v)}.}
Sind die Bieter risikoneutral, gilt Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle u(v)=v} und somit
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \beta '(v)=(v-\beta(v))\cdot\frac{g(v)}{G(v)}.}
Hierbei bzeichnet Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \beta(\cdot)} die Gleichgewichtsstrategie für risikoneutrale Bieter. Da Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle u(\cdot)} streng konkav ist und Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle u(0)=0} , gilt Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \frac{u(v)}{u'(v)}>v,\quad\forall v>0} und somit
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \gamma '(v)=\frac{u(v-\gamma(v))}{u'(v-\gamma(v))}\cdot\frac{g(v)}{G(v)}>(v-\gamma(v))\cdot\frac{g(v)}{G(v)}.}
Falls Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \beta(v)>\gamma(v)} gilt auch Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \beta '(v)<\gamma '(v)} . Da laut Annahme Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \beta (0)=\gamma (0)=0} , folgt nun Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \forall v>0} :
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \gamma (v)>\beta (v).}
So kommt es bei risiko-aversen Bietern zu höheren Gleichgewichtsgeboten als bei risiko-neutralen Bietern. Der risiko-averse Bieter will sich durch ein höheres Gebot gegen die Wahrscheinlichkeit des Verlierens der Auktion versichern.[10]
Beispiel: Bieter mit konstanter relativer Risikoaversion und gleichverteilten Bewertungen
Die Auszahlung des Bieters Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle i} mit Bewertung Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle v_i} des zu versteigernden Objektes und Gebot Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle b_i} ist nun
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle u(b_i,b_{-i},v_i)=\begin{cases} (v_i-b_i)^r & b_i>\max_{j\neq i} b_{j} \\ 0 & b_i<\max_{j\neq i} b_{j}\end{cases}}
mit Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle r\in (0,1)} .
Weiterhin gilt Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle f(x)=\begin{cases}\frac{1}{\overline{v}} & x \in [0,\overline{v}] \\ 0 & x \notin[0,\overline{v}]\end{cases}} und Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle F(x)=\begin{cases}\frac{1}{\overline{v}}x & x \in [0,\overline{v}] \\ 0 & x \notin[0,\overline{v}]\end{cases}} und somit auch
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle G(v)=\left[F(v)\right]^{n-1}=\left(\frac{1}{\overline{v}}v\right)^{n-1}.}
Maximierung der erwarteten Auszahlung führt zur optimalen Bietstrategie
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \gamma(v)=\frac{n-1}{n+r-1}\cdot v.}
Vergleicht man die beiden Fälle der Risikoneutralität und Risikoaversion bei gleichverteilten Bewertungen, so gilt für Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle r\in (0,1)} : Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \gamma(v)>\beta(v)} .
Verkäufer mit Reservationspreis
Hat der Verkäufer einen Reservationspreis, also einen Preis, unter diesem er nicht bereit ist, das zu versteigernde Objekt zu verkaufen, so lautet die optimale Bietstrategie eines Bieters, das erwartete Maximum aus Reservationspreis und höchste Bewertung aller anderen Bieter zu bieten, gegeben diese höchste Bewertung ist kleiner als die eigene Bewertung des Bieters.
Hat der Verkäufer einen Reservationspreis Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle r>0} , so ist der erzielte Preis mindestens Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle r} , da kein Bieter Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle i} mit Bewertung Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle v_i<r} einen positiven Gewinn erzielen kann.[11] Zudem gilt im symmetrischen Gleichgewicht für die Bietstrategie Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \beta (r)=r} , da ein Bieter mit Bewertung Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle r} die Auktion nur gewinnt, wenn alle anderen Bieter geringere Gebote als Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle r} abgegeben haben und er dann auch mit einem Gebot in Höhe von Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle r} die Auktion gewinnt.[11] Für die optimale Bietstrategie im Fall Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle v \geq r} gilt:
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \beta (v)=E[\max{(Y_1,r)}|Y_1<v]=r\cdot\frac{G(r)}{G(v)}+\frac{1}{G(v)}\int_r^v yg(y)dy.}
Asymmetrische Bieter
Bei 2 asymmetrischen Bieter, deren Bewertungen nicht gleich verteilt sind, bietet der Bieter im Gleichgewicht höher, dessen Bewertungen stochastisch niedriger verteilt sind.
Es existieren 2 Bieter mit Bewertungen Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle v_1} und Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle v_2} , die unabhängig auf Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle [0,\overline{v_1}]} bzw. Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle [0,\overline{v_2}]} mit Verteilungsfunktionen Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle F_1(x)} bzw. Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle F_2(x)} verteilt sind. Die Strategien im Gleichgewicht seien Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \beta_1} und Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \beta_2} . Diese Strategien sind monoton wachsend, differenzierbar und haben als Umkehrfunktion Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \phi_1=\beta_1^{-1}} und Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \phi_2=\beta_2^{-1}} . Es gilt wie im symmetrischen Fall Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \beta_1(0)=\beta_2(0)=0} und ausserdem Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \beta_1(\overline{v_1})=\beta_2(\overline{v_2})=\overline{b}} , da, wenn beispielsweise Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \beta_1(\overline{v_1})>\beta_2(\overline{v_2})} gelten würde, Bieter 1 die Auktion mit Wahrscheinlichkeit 1 gewinnt, falls seine Bewertung Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \overline{v_1}} ist, jedoch gewinnt er trotzdem, wenn er sein Gebot um einen infinitesimal kleinen Betrag Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \epsilon>0} reduzieren würde.[12]
Gegeben Spieler Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle j=1,2} spielt seine Strategie Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \beta_j} , die erwartete Auszahlung von Spieler Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle i\neq j} mit Bewertung Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle v_i} und Gebot Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle b<\overline{b}} ist
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle E[b,b^{\ast}_{-i},v_i]=F_j(\phi_j(b))\cdot(v_i-b).}
Ableiten nach Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle b} führt zu
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \frac{\partial E[b,b^{\ast}_{-i},v_i]}{\partial b}=\phi_j'(b)\cdot F_j'(\phi_j(b))(v_i-b)-F_j(\phi_j(b))\overset{!}{=}0.}
Im Gleichgewicht gilt Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle v_i=\phi_i(b)} und mit Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle F_j'(x)=f_j(x),\quad\forall j=1,2} , folgt:
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \phi_j'(b)=\frac{F_j(\phi_j(b))}{f_j(\phi_j(b))\cdot(\phi_i(b)-b)}.}
Zu diesem System von Differentialgleichungen kann man nur für einige Spezialfälle eine explizite Lösung angeben. Gilt aber zum Beispiel, dass die Bewertungen von Bieter 1 stochastisch höher sind als die von Bieter 2, d.h. für Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \overline{v_1}\geq\overline{v_2}} und Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \forall x\in (0, \overline{v_2})} gilt
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \frac{f_1(x)}{F_1(x)}>\frac{f_2(x)}{F_2(x)},}
so folgt
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \beta_1(x)<\beta_2(x), \quad \forall x\in (0,\overline{v_2}).}
Der "schwache" Bieter 2 bietet aufgrund seiner stochastisch niedrigeren Bewertungen aggressiver gegenüber dem "starken" Bieter 1.[13]
Abhängige Bewertungen bzw. Versteigerung von Objekten mit allgemeinem Wert
Bei Versteigerung von Objekten mit allgemeinem Wert unterliegt der Höchstbietende dem Fluch des Gewinners: Er bietet systematisch höher als er müsste um die Auktion zu gewinnen.
Es existieren Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle n} Bieter mit Bewertung Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle v_i} . Der wahre Wert des zu versteigernden Objekts sei Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle V} mit Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle V} gleichverteilt auf Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle [\underline{V},\overline{V}]} . Jeder Bieter Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle i} hat eine Schätzung für den wahren Wert Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle v_i=V+\varepsilon_i} . Der Wert Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \varepsilon_i} ist die Genauigkeit der Schätzung des Bieters Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle i} des wahren Wertes Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle V} , wobei die Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \varepsilon_i} unabhängig von Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle V} auf Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle [-\varepsilon,\varepsilon]} gleichverteilt mit Dichtefunktion Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle f(\varepsilon)=\frac{1}{2\varepsilon}} sind.[14] Die Schätzungen der Bieter sind erwartungstreu, denn es gilt:
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle E[v_i]=\frac{1}{2\varepsilon}\int_{-\varepsilon}^{\varepsilon}V+\varepsilon_id\varepsilon_i=V.} [14]
Somit liegen alle Schätzungen der Bieter im Intervall Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle [V-\varepsilon,V+\varepsilon]} bzw. weiß Bieter Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle i} , dass der wahre Wert im Intervall Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle [v_i-\varepsilon,v_i+\varepsilon]} liegt. [14]
Maximierung der erwarteten Auszahlung führt zur optimalen Bietstrategie[15]:
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \beta(v_i)=(v_i-\varepsilon)+\frac{2\varepsilon}{n+1}\cdot\exp\left(-\frac{n}{2\varepsilon}\cdot(\underline{V}+\varepsilon-v_i)\right).}
Insbesondere gilt:
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \frac{\partial\beta(v_i)}{\partial n}<0,}
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \lim\limits_{n \to \infty}\beta(v_i)=v_i-\varepsilon} .
Das optimale Gebot ist der kleinste Wert des Objekts Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle v_i-\varepsilon} auf Grund der Schätzung Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle v_i} plus ein Zuschlag, der umso geringer ausfällt, umso mehr Bieter sich an der Auktion beteiligen.[16]
Der Gewinner der Auktion unterliegt dem Fluch des Gewinners: Würde der Bieter nur auf Grund seiner eigenen Schätzung des wahren Wertes, Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle v_i} , bieten, so ist das optimale Gebot das gleiche wie im Fall von Objekten mit rein privater Bewertung. Jedoch vernachlässigt diese Schätzung die Information, dass der Gewinner der Auktion die höchste Schätzung hatte und somit ist das abgegebene Gebot höher als das optimale Gebot.[16]
Vergleich Theorie und Empirie
Obwohl die Holländische Auktion und die Erstpreisauktion bei Auktionen von Objekten mit rein privaten Bewertungen und risiko-neutralen Bietern strategisch äquivalent sind, ergeben sich bei Experimenten einige Unterschiede. So sind die erzielten Preise bei einer Erspreisauktion signifikant höher als bei einer Holländische Auktion.[17] Eine mögliche Erklärung hierfür ist, dass bei einer Holländischen Auktion der Preis in 50 Cent Schritten nach unten geht, während bei einer Erstpreisauktion Gebote nicht in 50 Cent Schritten abgegeben werden müssen.[18]
Erhöht sich die Bieteranzahl, so hat sich bei Experimenten gezeigt, dass dann auch die Höhe der abgegebenen Gebote steigen.[19]
Vergleicht man die Englische Auktion, Holländische Auktion, Erst- und Zweitpreisauktion bezüglich ihrer Effizienz im Sinne von Pareto-Optimalität, so ist die Englische Auktion am effizientesten, gefolgt von der Zweitpreisauktion, Erstpreisauktion und zum Schluß die Holländische Auktion.[20] [21]
Aus Sicht des Auktionators bzw. Verkäufers ist die Erstpreisauktion am wünschenswertesten, da sie von allen vier Auktionsarten die höchsten Preise erzielt.[20]
Siehe auch
Einzelnachweise
- ↑ a b Eichberger, Jürgen: Grundzüge der Mikroökonomik. 2. Auflage, Mohr Siebeck, Tübingen, 2004: S.300
- ↑ a b c d https://mikebrandlyauctioneer.wordpress.com/auction-publications/history-of-auctions/
- ↑ a b http://www.econport.org/econport/request?page=man_auctions_briefhistory
- ↑ a b c http://www.econport.org/econport/request?page=man_auctions_firstpricesealed
- ↑ http://www.newyorkfed.org/research/current_issues/ci3-9.pdf S.1-2
- ↑ http://www.deutsche-finanzagentur.de/de/institutionelle-investoren/primaermarkt/tenderverfahren/
- ↑ Krishna, Vijay: Auction Theory. 2. Auflage, Academic Press, Amsterdam, Heidelberg u.a., 2010: S.14
- ↑ Krishna, Vijay: Auction Theory. 1. Auflage, Academic Press, Amsterdam, Heidelberg u.a., 2010: S.18-19
- ↑ Eichberger, Jürgen: Grundzüge der Mikroökonomik. 2. Auflage, Mohr Siebeck, Tübingen, 2004: S.299
- ↑ Krishna, Vijay: Auction Theory. 2. Auflage, Academic Press, Amsterdam, Heidelberg u.a., 2010: S.40
- ↑ a b Krishna, Vijay: Auction Theory. 2. Auflage, Academic Press, Amsterdam, Heidelberg u.a., 2010: S.21
- ↑ Krishna, Vijay: Auction Theory. 2. Auflage, Academic Press, Amsterdam, Heidelberg u.a., 2010: S.46
- ↑ Krishna, Vijay: Auction Theory. 2. Auflage, Academic Press, Amsterdam, Heidelberg u.a., 2010: S.47
- ↑ a b c Eichberger, Jürgen: Grundzüge der Mikroökonomik. 2. Auflage, Mohr Siebeck, Tübingen, 2004: S.302
- ↑ für eine ausführliche Herleitung, siehe Eichberger, Jürgen: Grundzüge der Mikroökonomik. 2. Auflage, Mohr Siebeck, Tübingen, 2004: S.305-311
- ↑ a b Eichberger, Jürgen: Grundzüge der Mikroökonomik. 2. Auflage, Mohr Siebeck, Tübingen, 2004: S.307-308
- ↑ Cox, James C., Bruce Roberson, and Vernon L. Smith.Theory and behavior of single object auctions. Research in experimental economics 2.1 (1982): S.26-27
- ↑ Coppinger, Vicki M., Vernon L. Smith, and Jon A. Titus. INCENTIVES AND BEHAVIOR IN ENGLISH, DUTCH AND SEALED‐BID AUCTIONS. Economic Inquiry 18.1 (1980): S.16-17
- ↑ Kagel, John H., and Dan Levin. Independent private value auctions: Bidder behaviour in first-, second-and third-price auctions with varying numbers of bidders. The Economic Journal (1993): S.874
- ↑ a b Coppinger, Vicki M., Vernon L. Smith, and Jon A. Titus. INCENTIVES AND BEHAVIOR IN ENGLISH, DUTCH AND SEALED‐BID AUCTIONS. Economic Inquiry 18.1 (1980): S.22
- ↑ Cox, James C., Bruce Roberson, and Vernon L. Smith.Theory and behavior of single object auctions. Research in experimental economics 2.1 (1982): S.28
Literatur
- Vijay Krishna: Auction Theory. 2. Auflage. Academic Press, Amsterdam, Heidelberg u.a. 2010, ISBN 978-0-12-374507-1.
- Paul Milgrom: Putting Auction Theory to Work. 1. Auflage. Cambridge Univ. Press, Cambridge 2004, ISBN 0-521-53672-3.
- Jürgen Eichberger: Grundzüge der Mikroökonomik. 1. Auflage. Mohr Siebeck, Tübingen 2004, ISBN 978-3-16-148167-3.
- Paul Klemperer: Auctions: theory and practice. 1. Auflage. Princeton Univ. Press, Princeton u.a. 2004, ISBN 978-0-691-11426-2.
- John H. Kagel, Alvin E. Roth: The handbook of experimental economics. 1. Auflage. Princeton Univ. Press, Princeton u.a. 1995, ISBN 978-0-691-05897-9.
- Cox, James C., Bruce Roberson, and Vernon L. Smith.Theory and behavior of single object auctions. Research in experimental economics 2.1 (1982)
- Coppinger, Vicki M., Vernon L. Smith, and Jon A. Titus. INCENTIVES AND BEHAVIOR IN ENGLISH, DUTCH AND SEALED‐BID AUCTIONS. Economic Inquiry 18.1 (1980)
- Kagel, John H., and Dan Levin. Independent private value auctions: Bidder behaviour in first-, second-and third-price auctions with varying numbers of bidders. The Economic Journal (1993): S.868-879.
- Kagel, John H., and Dan Levin. The winner's curse and public information in common value auctions. The American economic review (1986): S.894-920.
Weblinks
- Paul Klemperers Website - u.a. online Version seines Buches "Auctions: Theory and Practice"
- Vijay Krishna - Online verfügbare Vorlesungsunterlagen zu Auktionen von Vijay Krishna