Carnot-Wirkungsgrad
Der Carnot-Wirkungsgrad Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \eta_c} , auch Carnot-Faktor genannt, ist der höchste theoretisch mögliche Wirkungsgrad bei der Umwandlung von thermischer Energie in mechanische Energie.[1] Er beschreibt den Wirkungsgrad des Carnot-Prozesses, eines vom französischen Physiker Nicolas Léonard Sadi Carnot erdachten idealen Kreisprozesses.[2]
Berechnung
Der Wert des Carnot-Wirkungsgrades hängt ab von den Kelvin-Temperaturen Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle T_h} (heiß) und Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle T_k} (kalt) der Reservoirs, zwischen denen die Wärmekraftmaschine arbeitet:[1]
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \eta_c = \frac{T_h - T_k}{T_h} = 1 - \frac{T_k}{T_h} }
Der Carnot-Wirkungsgrad ist umso größer, je höher Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle T_h} und je tiefer Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle T_k} ist. Da Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle T_h} nach oben und Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle T_k} nach unten begrenzt sind, ist ein Wirkungsgrad von 100 % ausgeschlossen.
Beispiel
Der Carnot-Wirkungsgrad eines Prozesses, der zwischen 800 °C (1073,15 K) und 100 °C (373,15 K) abläuft, beträgt:
Theoretische Grundlage
Eine Wärmekraftmaschine entnimmt Energie in Form von Wärme Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle Q_h} aus einem Wärmespeicher hoher Temperatur Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle T_h} und gibt einen Teil davon als Nutzarbeit Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle W} (z. B. in Form von mechanischer Arbeit) ab. Der übrige Teil der entnommenen Energie fließt als Wärme Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle Q_k} in einen Wärmespeicher niedrigerer Temperatur Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle T_k} . Der Wirkungsgrad Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \eta} der Wärmekraftmaschine ist definiert als Verhältnis der abgegebenen Nutzarbeit zur aufgenommenen Wärmemenge:[3]
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \eta = \frac{W}{Q_h}}
Der Wirkungsgrad einer Wärmekraftmaschine wird durch den Zweiten Hauptsatz der Thermodynamik begrenzt: Bei der isothermen Entnahme der Wärme aus dem heißen Reservoir wird die Entropie auf die Maschine übertragen; auf der kalten Seite der Maschine wird die Entropie Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle S_k = \frac{Q_k}{T_k}} auf das kalte Reservoir übertragen.
Da in selbständig ablaufenden Prozessen die Entropie niemals abnimmt, muss gelten:
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle S_k \ge S_h} .
Entsprechend gilt für die Wärme:
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \Rightarrow Q_k \ge Q_h \, \frac{T_k}{T_h}}
Berücksichtigt man außerdem, dass die gesamte Energiebilanz neutral ist
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle Q_k = Q_h - W} ,
so folgt für die Nutzarbeit:
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \Rightarrow W \le Q_h (1 - \frac{T_k}{T_h})}
und entsprechend für den Wirkungsgrad:
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \eta \le \eta_c} .
In der Praxis sind isotherme Wärmeübergänge nicht realisierbar, und die Prozesstemperaturen weichen von den Reservoirtemperaturen ab. Technisch werden daher je nach Kreisprozess nur maximale Wirkungsgrade von über zwei Drittel des Carnot-Wirkungsgrades erreicht.
Analoge Größen für Wärmepumpen und Kältemaschinen
In Wärmepumpen und Kältemaschinen wird der entgegengesetzte Prozess betrieben: mechanische bzw. elektrische Energie wird aufgewendet, um thermische Energie von niedrigen auf höhere Temperaturen zu heben. Daher beschreibt der Carnot-Wirkungsgrad hier nicht die maximal erzielbare, sondern die mindestens aufzuwendende elektrische Energie:
- Wärmepumpe:
- Kältemaschine: .
Die Effizienz dieser Maschinen wird folglich nicht durch den Wirkungsgrad, sondern durch Leistungszahlen beschrieben.
Bei einer Wärmepumpe (WP) wird die auf dem oberen Temperaturniveau von der Wärmepumpe abgegebene Wärme Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle Q_h} genutzt:
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \epsilon_{\mathrm{WP}} = \frac{Q_h}{W_{\mathrm{el}}} < \epsilon_{\mathrm{WP,c}}}
mit
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \epsilon_{\mathrm{WP,c}} = \frac{1}{\eta_c} = \frac{T_h}{T_h - T_k} > 1} .
Bei einer Kältemaschine (KM) ist die bei der niedrigen Temperatur durch die Kältemaschine aufgenommene Wärme Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle Q_k} die Nutzgröße:
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \epsilon_{\mathrm{KM}} = \frac{Q_k}{W_{\mathrm{el}}} < \epsilon_{\mathrm{KM,c}}}
mit:
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \epsilon_{\mathrm{KM,c}} = \frac{1}{\eta_c} -1 = \frac{T_k}{T_h - T_k}} .
Weblinks
Einzelnachweise
- ↑ a b Jürgen U. Keller: Technische Thermodynamik in Beispielen / Grundlagen. Walter de Gruyter, 2011, ISBN 978-3-11-084335-4, S. 188 (eingeschränkte Vorschau in der Google-Buchsuche).
- ↑ Paul A. Tipler, Gene Mosca: Physik für Studierende der Naturwissenschaften und Technik. Springer-Verlag, 2019, ISBN 978-3-662-58281-7, S. 621 (eingeschränkte Vorschau in der Google-Buchsuche).
- ↑ Freund, Hans-Joachim.: Lehrbuch der Physikalischen Chemie. 6., vollst. überarb. u. aktualis. Auflage. Wiley-VCH, Weinheim 2012, ISBN 978-3-527-32909-0.