Datenmatrix

aus Wikipedia, der freien Enzyklopädie

In der Statistik ist die Datenmatrix, auch Versuchsplanmatrix,[1] Designmatrix[1] (von englisch research design: deutsch Versuchsplan), Modellmatrix, Beobachtungsmatrix oder Regressormatrix genannt, eine Matrix, die Daten über mehrere Merkmale mehrerer Personen oder Objekte (statistische Einheiten) enthält. Sie ist Grundlage des klassischen Modells der linearen Mehrfachregression.

Der Begriff Versuchsplan- bzw. Designmatrix (bezeichnet mit ) kommt aus dem Teilgebiet der statistischen Versuchsplanung, die sich mit dem statistisch optimalen Entwurf von Experimenten beschäftigt (siehe Optimale Versuchsplanung). Wenn die Werte der Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle x_{ij}} geplant sind (vom Forscher festgelegt), enthält die Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \mathbf{X}} -Matrix im Wesentlichen den Versuchsplan und wird daher manchmal als Versuchsplanmatrix bezeichnet.[2]

Definition

Geht man davon aus, dass Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle n} Untersuchungseinheiten vorliegen, an denen Variablen beobachtet wurden, dann ist der an der -ten Untersuchungseinheit beobachtete Wert der -ten Variable . Die Datenmatrix ist definiert als die -Matrix

Fehler beim Parsen (Konvertierungsfehler. Der Server („https://wikimedia.org/api/rest_“) hat berichtet: „Cannot get mml. Server problem.“): {\displaystyle \mathbf {X} =(x_{ij})_{n\times p}={\begin{pmatrix}1&x_{11}&x_{12}&\cdots &x_{1k}\\1&x_{21}&x_{22}&\cdots &x_{2k}\\\vdots &\vdots &\vdots &\ddots &\vdots \\1&x_{n1}&x_{n2}&\cdots &x_{nk}\end{pmatrix}}} .

Die -te Zeile der Datenmatrix ist der – mit den am -ten Objekt beobachteten Variablenwerten – gebildete Zeilenvektor , . Man kann das -te Objekt geometrisch als Punkt darstellen, indem man die Elemente als Koordinaten eines Punktes in einem -dimensionalen Merkmalsraum deutet, der von rechtwinkelig angeordneten Merkmalsachsen aufgespannt wird. Wenn man auf diese Art alle Zeilenvektoren von Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \mathbf{X}} als Punkte darstellt, ergibt sich eine die Objekte (Untersuchungseinheiten) repräsentierende Verteilung von Punkten im Merkmalsraum.[3]

Ebenso kann man die Datenmatrix als Zusammenfassung der Spaltenvektoren Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \mathbf{x}_{\mathbf{.}j} = (x_{1j}, x_{2j}, \dotsc, x_{nj})^{\top}} , Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle j = 0, \dotsc, k} deuten. Jeder Spaltenvektor ist einer Variablen Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle X_j} zugeordnet und beinhaltet die an den Untersuchungseinheiten beobachteten Werte dieser Variablen. Mit diesen Werten können die Variablen in einem rechtwinkeligen Koordinatensystem, in dem die Achsen die Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle n} Untersuchungseinheiten repräsentieren, als Punkte dargestellt werden. Im von den Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle n} Achsen aufgespannten Objektraum lassen sich die Beziehungen zwischen den Variablen veranschaulichen.[4]

Alternative Darstellungen

Die Datenmatrix Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \mathbf{X}} kann als eine partitionierte Matrix bezüglich ihrer Spalten ausgedrückt werden als

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \mathbf{X} = (\mathbf{1}, \mathbf{x}_{(1)},\mathbf{x}_{(2)}, \dotsc, \mathbf{x}_{(k)})} .

Die Spalten der Datenmatrix Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \mathbf{X}} inklusive des Einsvektors Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \mathbf{1}} sind alle Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle n} -dimensionale Vektoren und daher Punkte im Datenraum. Da für gewöhnlich angenommen wird, dass Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \mathbf{X}} von Rang Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle k + 1} ist, sind die Vektoren linear unabhängig. Die Menge aller möglichen Linearkombinationen der Spalten von Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \mathbf{X}} bilden eine Teilmenge des Datenraums.[5]

Einzelnachweise

  1. a b design matrix. Glossary of statistical terms. In: International Statistical Institute. 1. Juni 2011, abgerufen am 19. Mai 2020 (englisch).
  2. Rencher, Alvin C., und G. Bruce Schaalje: Linear models in statistics., John Wiley & Sons, 2008., S. 139
  3. Werner Timischl: Angewandte Statistik. Eine Einführung für Biologen und Mediziner. 3. Auflage. 2013, S. 420.
  4. Werner Timischl: Angewandte Statistik. Eine Einführung für Biologen und Mediziner. 3. Auflage. 2013, S. 420.
  5. Rencher, Alvin C., und G. Bruce Schaalje: Linear models in statistics., John Wiley & Sons, 2008., S. 153.