Deskriptive Mengenlehre
Die deskriptive Mengenlehre ist ein Teilgebiet der Mengenlehre, das sich mit Eigenschaften definierbarer Mengen befasst. Die Grundidee besteht darin, ausgehend von „einfachen“ Mengen durch gewisse Bildungsgesetze kompliziertere Mengen zu konstruieren und deren Eigenschaften zu untersuchen. Die in der mathematischen Praxis vorkommenden Mengen lassen sich in der Regel auf diese Weise gewinnen. Hier stehen zunächst Teilmengen reeller Zahlen wie offene Mengen, Gδ-Mengen, Borelmengen und daraus abgeleitete Mengenhierarchien im Vordergrund; die mengentheoretischen, topologischen oder maßtheoretischen Eigenschaften können aber ebenso gut in allgemeinen polnischen Räumen untersucht werden, wobei der zur Menge der irrationalen Zahlen homöomorphe Baire-Raum eine besondere Rolle spielt.
Historische Anfänge
Eine wichtige Fragestellung der Mengenlehre war von Anfang an das Problem der Mächtigkeit des Kontinuums, das heißt der Menge der reellen Zahlen. Die Kontinuumshypothese, wonach es zwischen der Mächtigkeit abzählbar unendlicher Mengen und der Mächtigkeit des Kontinuums keine weiteren Mächtigkeiten gibt, hat sich durch die Arbeiten Gödels und Cohens als weder beweisbar noch widerlegbar herausgestellt. Das schließt natürlich nicht aus, dass man für gewisse Typen von Teilmengen des Kontinuums zeigen kann, dass sie im überabzählbaren Fall automatisch die Mächtigkeit des Kontinuums haben; man sagt dann, dass dieser Typ von Mengen die Kontinuumshypothese erfüllt. Besonders einfach ist das für offene Mengen in , denn diese sind Vereinigungen offener Intervalle. Eine offene Menge ist daher entweder leer oder enthält ein offenes Intervall und ist damit gleichmächtig zu Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \R} ; die offenen Mengen genügen also der Kontinuumshypothese. Für abgeschlossene Mengen, also für die Komplemente der offenen Mengen, ist das schon etwas schwieriger. Ein sehr frühes Resultat in dieser Richtung ergibt sich aus dem Satz von Cantor-Bendixson, in der Tat genügen auch die abgeschlossenen Mengen der Kontinuumshypothese.
Baire hatte bereits 1899 die heute sogenannten Baire-Funktionen eingeführt; dabei handelt es sich um die kleinste Menge von Funktionen auf Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \R} oder auf anderen polnischen Räumen, die alle stetigen Funktionen enthält und unter punktweiser Konvergenz abgeschlossen ist. Lebesgue charakterisierte diese 1905 als sogenannte analytisch darstellbar, das heißt als kleinste Menge von Funktionen, die alle Konstanten und alle Projektionen Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle (x_1,\ldots,x_n)\mapsto x_i} enthält und unter Summen, Produkten und punktweiser Konvergenz abgeschlossen ist. In diesem Zusammenhang führte er die Borelmengen ein und behauptete in einem Lemma, dass Projektionen von Borelmengen wieder solche seien. Dass dies aber falsch ist, war Suslin aufgefallen, woraus sich der Begriff der analytischen Menge entwickelte. Auch für analytische Mengen konnte gezeigt werden, dass sie die Kontinuumshypothese erfüllen. Für größere Klassen, die sich mittels gewisser Bildungsgesetze aus den analytischen gewinnen und sich in sogenannten Hierarchien anordnen lassen, bleibt die Frage offen.[1]
Der Zweig der effektiven deskriptiven Mengenlehre geht maßgeblich auf Entwicklungen Stephen Cole Kleene zurück, etwa die Entwicklung der arithmetischen Hierarchie, die Verbindungen zur klassischen deskriptiven Mengenlehre wurden jedoch erst später aufgezeigt.[2]
Hierarchien
Die folgenden Ausführungen sollen einen ersten Eindruck über das Forschungsgebiet der deskriptiven Mengenlehre geben.
Borel-Hierarchie
Ausgangspunkt der Borel-Hierarchie ist die Klasse der offenen Mengen in Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \R} oder allgemeiner in einem perfekten, polnischen Raum Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle X} ; die Klasse der offenen Mengen werde mit Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \Sigma^0_1} bezeichnet. Ist Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \omega} die Menge der natürlichen Zahlen mit der diskreten Topologie, so ist Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle X\times \omega} wieder ein polnischer Raum. Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \Sigma^0_2} wird nun definiert als die Menge aller Projektionen von Komplementen von Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \Sigma^0_1} aus Fehler beim Parsen (Konvertierungsfehler. Der Server („https://wikimedia.org/api/rest_“) hat berichtet: „Cannot get mml. Server problem.“): {\displaystyle X\times \omega } auf die erste Komponente , das heißt Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \Sigma^0_2} besteht aus allen Mengen der Form Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle p_1(A)} , wobei Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle (X\times \omega) \setminus A} eine Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \Sigma^0_1} -Menge, also eine offene Menge, ist und Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle p_1\colon X\times \omega \rightarrow X} die Projektion auf die erste Komponente ist. Dieses Verfahren kann man iterieren, indem man Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \Sigma^0_{n+1}} als die Klasse aller Mengen der Form Fehler beim Parsen (Konvertierungsfehler. Der Server („https://wikimedia.org/api/rest_“) hat berichtet: „Cannot get mml. Server problem.“): {\displaystyle p_{1}(A)} definiert, wobei Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle A} alle Teilmengen von Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle X\times \omega} durchläuft, deren Komplemente -Mengen sind.
Die Komplemente von bilden die Klasse der Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \Pi^0_n} -Mengen. Die Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \Sigma^0_2} -Mengen sind auch als Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle F_\sigma} -Mengen bekannt und deren Komplemente, also die Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \Pi^0_2} -Mengen, als Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle G_\delta} -Mengen. Insgesamt erhält man mittels obiger Bildungsweise aufsteigende Klassen
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \Sigma^0_1 \subset \Sigma^0_2 \subset \Sigma^0_3 \subset \dotsb }
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \Pi^0_1 \subset \Pi^0_2 \subset \Pi^0_3 \subset \dotsb }
und man kann zeigen, dass diese Konstruktion nicht aus den Borelmengen herausführt und dass zusätzlich
- und Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \Pi^0_n \subset \Sigma^0_{n+1}}
gilt. Es stellt sich daher die Frage, ob mit der Klasse aller Borelmengen übereinstimmt. Die Antwort lautet nein, man muss obigen Bildungsprozess transfinit fortsetzen, was sich mit dem Begriff der Ordinalzahl zwanglos durchführen lässt. Es stellt sich dann heraus, dass man diesen Prozess Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \aleph_1} -mal durchführen muss, wobei Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \aleph_1} die kleinste überabzählbare Ordinalzahl ist (siehe auch Aleph-Funktion) um auf diese Weise alle Borelmengen zu erhalten.
Projektive Hierarchie
Die projektive Hierarchie entsteht nach demselben Muster aus der Klasse der offenen Mengen, lediglich der Raum Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \omega} wird durch den Baire-Raum Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \mathcal{N}=\omega^\omega} ersetzt, wobei Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \omega^\omega} die Menge aller Funktionen Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \omega \rightarrow \omega} ist, was man wie üblich mit dem -fachen kartesischen Produkt von Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \omega} mit sich selbst identifiziert und darauf die Produkttopologie betrachtet. Dieser Raum ist homöomorph zum Raum der irrationalen Zahlen mit der Relativtopologie von Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \R} , weshalb man den Baire-Raum in der deskriptiven Mengenlehre oft den Raum der irrationalen Zahlen nennt. Die Bezeichnungen der Hierarchien lauten
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \Pi^1_1 \subset \Pi^1_2 \subset \Pi^1_3 \subset \dotsb} .
Beachte, dass der obere Index eine 1 ist. Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \Sigma^1_1} ist also die Klasse aller Mengen der Form Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle p_1(A)} , wobei Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle A} alle abgeschlossenen Teilmengen von Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle X\times \mathcal{N}} durchläuft und Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle X} ein polnischer Raum ist; diese Mengen nennt man auch analytisch.Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \Pi^1_1} ist wieder die Klasse der Komplemente solcher Mengen, die man daher auch koanalytisch nennt.
Bereits Suslin hatte gezeigt, dass genau mit den Borelmengen übereinstimmt.[3] Man kann zeigen, dass die -Mengen die Kontinuumshypothese erfüllen und alle Lebesgue-messbar sind. Diese Aussagen gehen für verloren; Gödel hat gezeigt, dass es unter der Annahme des Konstruierbarkeitsaxioms eine Menge in Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \Sigma^1_1 \cap \Pi^1_1} gibt, die nicht Lebesgue-messbar ist.[4] Nach einem Satz von Sierpiński ist jede Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \Sigma^1_2} Vereinigung von Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \aleph_1} -vielen Borelmengen.
κ-Suslin-Mengen
Ersetzt man in der Konstruktion der Lusin-Hierarchie den Baire-Raum Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \mathcal{N}=\omega^\omega} durch Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \kappa^\omega} , wobei Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \kappa} eine Kardinalzahl mit der diskreten Topologie sei, so kommt man zum Begriff der Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \kappa} -Suslin-Menge. Eine Teilmenge eines polnischen Raums Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle X} ist eine -Suslin-Menge, wenn sie die Form Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle p_1(A)} für eine abgeschlossene Menge Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle A\subset X\times \kappa^\omega} hat. Die Klasse aller solchen Mengen wird mit Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle S(\kappa)} bezeichnet.
Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle S(\aleph_0)} stimmt offenbar mit der , also mit der Klasse aller analytischen Mengen, überein. Nach einem Satz von Shoenfield ist jede Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \Sigma^1_2} eine Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \aleph_1} -Suslin-Menge.[5] Aussagen über diese Mengenklassen erfordern tiefere Methoden der Mengenlehre, dabei stellt sich oft die Frage nach hinreichend starken Axiomen der Mengenlehre.
Regularitätseigenschaften
Neben solchen aus gewissen Operationen entstehenden Mengen betrachtet man bestimmte Regularitätseigenschaften von Teilmengen polnischer Räume und ihre Beziehungen zu den durch solche Konstruktionen gewonnenen Mengen. Beispiele für solche Eigenschaften sind:
- Eine Menge besitzt die Baire-Eigenschaft, wenn sie sich nur um eine magere Menge von einer offenen Menge unterscheidet.
- Eine Menge heißt universell messbar, wenn sie bezüglich jedes vollständigen, endlichen Maßes, das für alle Borel-Mengen definiert ist, messbar ist.
- Eine Menge besitzt die Perfekte-Mengen-Eigenschaft, wenn sie abzählbar ist oder eine nicht-leere perfekte Menge enthält.
Weitere Fragestellungen
Weitere wichtige Fragestellungen der deskriptiven Mengenlehre betreffen natürlich auch die Funktionen zwischen polnischen Räumen, insbesondere deren Messbarkeitseigenschaften, sowie Äquivalenzrelationen und algebraische Strukturen auf polnischen Räumen. Ferner können die oben beschriebenen Bildungsprozesse auf ihre Berechenbarkeit hin untersucht werden, dies geschieht im mit der Rekursionstheorie eng verzahnten Teilgebiet der effektiven deskriptiven Mengenlehre.
Anwendungsbereiche
Anwendung findet die deskriptive Mengenlehre etwa in folgenden Bereichen:
- Operatoralgebren
- Ergodentheorie
- Theorie unendlicher Automaten und Spiele
Literatur
- Alexander S. Kechris: Classical Descriptive Set Theory. Springer, Berlin 1994, ISBN 0-387-94374-9, S. 341.
- Y. N. Moschovakis: Descriptive Set Theory. North Holland, 1987, ISBN 0-444-70199-0.
Weblinks
- A.G. El'kin, V.I. Ponomarev: Descriptive set theory. In: Michiel Hazewinkel (Hrsg.): Encyclopedia of Mathematics. Springer-Verlag und EMS Press, Berlin 2002, ISBN 978-1-55608-010-4 (englisch, online).
Einzelnachweise
- ↑ Moschovakis.
- ↑ Akihiro Kanamori: The Emergence of Descriptive Set Theory. S. 256 (Online [PDF; 1000 kB; abgerufen am 30. November 2012]).
- ↑ Donald L. Cohn: Measure Theory, Birkhäuser, Boston (1980), ISBN 3-7643-3003-1, Kapitel 8.2, Corollary 8.3.3
- ↑ Thomas Jech: Set Theory. 3. millenium edition, revised and expanded. Springer, Berlin u. a. 2003, ISBN 3-540-44085-2, Corollary 25.28
- ↑ Y.N. Moschovakis: Descriptive Set Theory, North Holland 1987, ISBN 0-444-70199-0, Theorem 2B.2