Diskussion:Heron-Verfahren

aus Wikipedia, der freien Enzyklopädie

Was ist der Fehler?

Ich frage mich was mit Fehler gemeint ist? kann mich jmd mal aufklären? ;)

Hier haben wir es ja mit einem Näherungsverfahren (Iteration) zu tun, mit dem man sich nur Schritt für Schritt an den "wahren" Wert annähern kann, ihn also womöglich nie ganz erreicht. Mit jedem Schritt xn verringert sich die Abweichung - der Fehler - zwischen diesem aktuellen Zwischenergebnis und dem wahren Wert. Hier kann man nun wenigstens sehen, wie weit man noch maximal vom wahren Wert weg ist, so dass man mathematisch exakt entscheiden kann, ob man schon genau genug ist oder noch weiterschreiten muss. --PeterFrankfurt 20:44, 31. Aug 2006 (CEST)

Implementierung in SW

ich brauchte eine wurzelfunktion für ein embeddet-linux-system. ich hab mich an dem artikel orientiert und eine geschrieben. dachte das kann ruhig mit dahin, ist ja eine umsetzung von ebendem. wenn ihr findet das gehört nicht dahin - schmeisst es einfach wieder raus. zum fehler: da ja nur die wurzel der normierten mantisse iteriert wird und dann ein angepasster exponent eingesetzt wird, kann der absolute fehler doch recht groß werden, bei den floats maximal (2^64 ~ 1.8 × 10^19) mal der itrerationsfehler, das sind keine nachkommastellen.. grüße hørst

Ja, im Prinzip sehr schön. Das mit dem "Exponent = ... >>7" muss man Laien wohl noch erklären, dass da nämlich auf einem 16-Bit-Wort gearbeitet wird, wo am Anfang rechts noch ein Teil der Mantisse steht. Entsprechend muss die <<22 am Ende erklärt werden. Außerdem müssen wir noch an der Rechtschreibung in den Kommentaren arbeiten... --PeterFrankfurt 21:29, 24. Nov. 2006 (CET)
ok, ich texte noch einige erklärungen, und geb mir mühe, aber die syntax im geschriebenen deutsch ist nicht gerade meine stärke. wenn dir, oder sonst jemandem, etwas ins auge springt, ändert es doch einfach. referenz- und adress-opratoren, maschienenwortgrößen, binäroperationen und bitverschiebungen, sind an sich auch ein recht umfassendes thema, ich wollte den rahmen des artikels nicht sprengen - aber wenn es jetzt schon ein beispiel ist muß es auch verständlich sein.
grüße hørst
11:16 utc+1 25.11.2006
done
Hoffentlich habe ich den Spagat zwischen Verständlichkeit/Epik und sinnvoller Genauigkeit einigermaßen hinbekommen, und treibe den Freunden der Interpunktion nicht allzuviele Tränen in die Augen (Falls doch: sorry, hab´ mich bemüht).
Zum Fehler: Formal fehlt mir gerade eine LaTex-Referenz um die Formel hübsch zu machen, wenn also jemand gerade einen Formeleditor hat oder in der Lage ist mal eben die Formatierung einzusetzen, bitte, nur zu.
Inhaltlich: Ich habe die Funktion mal für alle Mantissenbitkombinationen durchlaufen lassen und mit ebenjener Formel rückgeprüft. Es ist mir bewußt, das das nicht den korrekten relativen Fehler beschreibt aber mit Bordmitteln war das der zugänglichste Wert, der etwas Ähnliches beschreibt (zugänglich auch im Sinne meiner Erinnerung an Mathe). Eine größere Anzahl Iterationen verändert diesen Wert nicht. Vorschläge für einen anderen Ansatz nehme ich gern an, und würde ich dann ggf. auch umsetzen.
Grüße hørst 14:00 (MEZ) 27.11.2006
So, ich habe mal ein bisschen an der Rechtschreibung gefeilt.
Es ist ja furchtbar lang geworden, hoffentlich beschwert sich da niemand.
Zum Fehler: Bei einer insgesamt 32 Bit langen Float-Zahl ist die genannte Genauigkeit doch das, was man erreichen kann. Wenn Du die Bibliotheksfunktion mal auf andere Werte ansetzt, wette ich, dass Du auch Fälle findest, wo dieser Algotithmus (zufällig) bessere Werte liefert.
Zur Geschwindigkeit: Wahrscheinlich läuft die Bibliotheksfunktion über ein Horner-Schema-Polynom, aber auch mit dieser Normierung auf das Intervall (0,5 | 2), denn hier ist die Kurve so glatt, dass sie sich extrem leicht sehr genau approximieren lässt. --PeterFrankfurt 21:58, 27. Nov. 2006 (CET)
Doch, ich muss mich mal beschweren. Vor lauter Kommentarzeilen findet man den Code nicht mehr. Eigentlich hatte ich erwartet, so einen Pseudocode-Algorithmus zu finden, wie er z.b. beim ggT dabeisteht. So etwas ist weit praktischer. Ich hatte mir hier besser nachvollziehbare Algorithmen gewünscht, da ich grad vor dem Problem stehe, dass mir jemand nen Basic-Algo geliefert hat, den er "Heron" nennt, und ich das jetzt gern mal überprüfen wollte. --Kaeru Gaman 10:19, 1. Mai 2007 (CET)

Falsche Formel

1. Zu 'Was ist der Fehler?': Der Fehler scheint zu sein, dass das [alte] Verfahren auf der Seite für die k-te Wurzel aus a nicht das richtige Ergebnis bringt.

2. Lösung: Ich habe jetzt das Problem gelöst (bin mir ziemlich sicher, kommt auch für k=2 hin). Falls jemand einen Fehler entdeckt, sollte man vielleicht die alte Seite wieder nehmen oder die Verallgemeinerung ganz weglassen.

Verallgemeinerung des Verfahrens - Wie oft muss k decrementiert werden bis die iteration terminiert?

Man könnte sicherheitshalber noch hinzufügen wie oft k-1-te Wurzel gezogen werden muss bis der Algorithmus(mit seiner davon doch unabhängigen Genauigkeit?) sein Werk vollendet hat.

Java-Applet

Das Applet wird noch um einen Zahlenstrahl erweitert, wodurch das Konvergenzverhalten schön illustriert wird ... so wird man nichtmehr von "lieblos" sprechen können ;-). Des Weiteren besteht auch im aktuellen Zustand aufgrund korrekter Arbeitsweise eine Existenzberechtigung. Die Entfernung des Links - insbesondere mit dieser Begründung - halte ich für falsch. Es kann schließlich auch bis zur entgültigen Fertigstellung verlinkt bleiben. Gruß, SequereMe

Nein. Ein Leser des Artikels darf von einem Link erwarten, dass er dort etwas erfährt, dass er im Artikel nicht erfährt. Bei deinem Applet ist das nicht der Fall. Noch dazu muss der Nutzer Java installiert haben. Dies stellt eine zusätzliche Hürde da. -- Stefan Birkner 17:52, 24. Feb. 2009 (CET)

Mathematischer Fehler bei Konvergenz abschnitt

Im Abschnitt steht aus x_n ≥ x_(n+1) ≥ Wurzel a daraus folgt lim n-> inf x_n= Wurzel a Daraus folgt aber nur die Konvergenz gegen eine reelle Zahl kleiner gleich Wurzel a und noch nicht die Konvergenz gegen Wurzel a. ( Mathmatische Muecke ) (nicht signierter Beitrag von 134.102.201.34 (Diskussion | Beiträge) 20:13, 25. Jan. 2010 (CET))

Vielleicht ist es im Artikel etwas schlecht formuliert, aber dort stehen nur die beiden von dir genannten Eigenschaften. Das daraus folgt steht dort nicht. --Stefan Birkner 21:43, 25. Jan. 2010 (CET)

zu "Historisches"

Heron gibt hier den Wert .

Der Wert, den das Heronverfahren liefert (das ist hier wohl gemeint, nicht die Person Heron), hängt vom Startwert ab. Startet man mit , so erhält man auch mit dem Heronverfahren . Das muss auch so sein: Wählt man allgemein für die Berechnung von den Startwert , so erhält man im nächsten Iterationsschritt

Also denselben Wert wie mit dem babylonischen Verfahren. --Digamma 10:39, 9. Mai 2010 (CEST)

Nachtrag 1: Der im Text angegebene Wert ist offenbar falsch. Das Heronverfahren liefert nämlich immer eine Näherung, die zu groß ist. Der angegebene Wert ist aber kleiner als der exakte 7,348469... .

Nachtrag 2: Der Satz Die oben angegebenen Verfahren wurden zwar nach Heron von Alexandria benannt, verwenden aber eine Iteration von Dezimalzahlen, die Heron nicht kannte. ist zumindest unglücklich formuliert. Denn das Heron-Verfahren selbst enthält keine Anweisung, ob mit Brüchen oder Dezimalzahlen (oder Sexagesimalzahlen oder was auch immer) gerechnet werden muss. Bei den angegebenen Beispielen wird mit Dezimalzahlen gerechnet. Dafür kann aber nur der Autor etwas, mit Heron hat das nichts zu tun.

Da ich nicht weiß, was Heron wirklich gemacht hat, der Abschnitt so, wie er da steht aber falsch ist, lösche ich ihn. -- Digamma 12:29, 3. Jun. 2010 (CEST)

Beispiel

Das Beispiel, bei dem Wurzel aus 9 berechnet werden soll, ist äußerst ungeschickt, weil 9 eine Quadratzahl ist und man deshalb das Heronverfahren nicht braucht. Zumal dieses ja nur Näherungswerte liefert, aber niemals den exakten Wert 3 (es sei denn, man wählt diesen schon als Startwert). Man bräuchte dann allerdings andere Bilder. --Digamma (Diskussion) 17:45, 16. Jan. 2015 (CET)

Also man muss das nicht unbedingt als ungeschicktes Beispiel ansehen, sondern man kann das als (durchaus berechtige) didaktische Absicht auffassen. Man nimmt extra eine Quadratzahl, so dass man sieht wie der Algorithmus ein bekanntes Ergebnis annähernd, das heißt es steht eine einfach zu verstehende Vergleichsgröße zur Verfügung. Wenn man ein "neues" Verfahren testet, dann macht man das ja zunächst gerade an Beispielen deren Ergebnisse man schon kennt.--Kmhkmh (Diskussion) 00:37, 17. Jan. 2015 (CET)
Ich finde das Beispiel als Mathematiker sogar sehr gut. Man kann daran ganz gut erkennen, dass es eben ein numerisches Näherungsverfahren ist, das die exakte Lösung nie erreicht (für fast alle Startwerte). Ohne Worte versteht jeder, der das Beispiel nachvollzieht mehr als dort explizit gesagt wird. --2A02:8109:1580:36BC:A46C:84E0:CFAC:8F05 15:38, 13. Nov. 2021 (CET)
Danke für die Antworten. Sie leuchten ein. --Digamma (Diskussion) 18:36, 14. Nov. 2021 (CET)

x^2 = a ist nicht äquivalent zu x = wurzel(a)

Im Abschnitt "Konvergenz" wird aber diese Äquivalenz behauptet. Eine weitere Lösung wäre ja noch x = −wurzel(a)... aber auch dann ist das ohne Bedingungen so eine Sache mit der Äquivalenz. Korrekt wäre: x^2 = a <== x = wurzel(a).

Verallgemeinerung mit Beispielen für die höheren Potenzen.

Gut wäre es wenn man die Formel noch mal allgemeiner darstellen könnte. --92.74.62.16 10:41, 20. Sep. 2022 (CEST)