Gyromagnetisches Verhältnis
Das gyromagnetische Verhältnis (auch: magnetogyrisches Verhältnis[1]) Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \gamma} bezeichnet den Proportionalitätsfaktor zwischen dem Drehimpuls (oder Spin) Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \vec X} eines Teilchens und dem dazugehörigen magnetischen Moment Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \vec \mu _X}
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \vec \mu _X = \gamma _X \vec X } .
Daher folgt: Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \gamma _X = \frac{|\vec \mu _X|}{|\vec X|}} . Die international verwendete Einheit des gyromagnetischen Verhältnisses ist rad·s−1·T−1 oder auch A·s·kg−1.
Das gyromagnetische Verhältnis eines geladenen Teilchens ist das Produkt seines (dimensionslosen) gyromagnetischen Faktors Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle g} und seines Magnetons Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \mu} , bezogen auf das reduzierte plancksche Wirkungsquantum Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \hbar} :
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \gamma = g \, \frac{\mu}{\hbar} }
mit
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \mu = \frac{q}{2\,m} \, \hbar } dem Magneton des Teilchens
- : elektrische Ladung
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle m } : Teilchenmasse.
Das gyromagnetische Verhältnis kann bestimmt werden unter Ausnutzung des Barnett-Effektes und des Einstein-de-Haas-Effektes. In vielen anderen Experimenten, wie z. B. ferromagnetische Resonanz oder Elektronenspinresonanz, kann der Wert von Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \gamma} deutlich abweichen – in diesem Fall spricht man vom spektroskopischen Splitting-Faktor bzw. -Verhältnis.
γℓ für reinen Bahndrehimpuls eines Elektrons
Wie im Artikel Magnetisches Moment ausgeführt, gilt für das magnetische Moment des Bahndrehimpulses eines Elektrons:
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \vec{\mu _\ell}= -\frac{e}{2m_e} \vec \ell} .
Mit
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle -e} der Ladung des Elektrons
- seiner Masse.
Daher folgt:
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \gamma _\ell =\frac{|\vec{\mu _\ell}|}{|\vec{\ell}|}=\frac{e}{2m_e}=\frac{g_\ell \mu _\mathrm B}{\hbar}} .
Mit
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \mu _\mathrm B} dem Bohrschen Magneton. Der g-Faktor für die Bahnbewegung ist also Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle g_\ell =1.}
γS für den Spin eines Teilchens
Betrachtet man ein Teilchen mit Spin Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \vec S} , so gilt:
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \vec \mu _S = \gamma _S \vec S} , beziehungsweise Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \gamma _S =\frac{|\vec{\mu _S}|}{|\vec{S}|}}
Der Wert dieser Naturkonstante ist für jede Teilchenart charakteristisch. Nach derzeitiger Messgenauigkeit beträgt sie
- für das freie Proton:
- Fehler beim Parsen (Konvertierungsfehler. Der Server („https://wikimedia.org/api/rest_“) hat berichtet: „Cannot get mml. Server problem.“): {\displaystyle \gamma _{\text{Proton}}=2{,}675\,221\,8744(11)\cdot 10^{8}\ \mathrm {rad} \cdot \mathrm {s} ^{-1}\,\mathrm {T} ^{-1}\,} [2]
- für das Elektron:
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \gamma_{\text{Elektron}} = 1{,}760\,859\,630\,23(53)\cdot 10^{11}\ \mathrm{rad}\cdot\mathrm{s}^{-1}\,\mathrm{T}^{-1}\,} [3]
dabei geben die eingeklammerten Ziffern jeweils die geschätzte Standardabweichung für den Mittelwert an, der den beiden letzten Ziffern vor der Klammer entspricht.
Der g-Faktor für Spinmagnetismus ist beim freien Elektron mit 2,002 319 ... ungefähr gleich 2. Beim freien Proton dagegen gilt Analoges keineswegs: Das magnetische Moment des Protons liegt zwar der Größenordnung nach bei dem sog. „Kernmagneton“ (das wäre der Wert Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle |e|\hbar/(2m_{\mathrm{ Proton}})\,} ), jedoch beträgt es ein krummzahliges Vielfaches dieses Wertes, genauer: das 2,79-fache. Auch das Neutron weist ein magnetisches Moment auf, obwohl es als ganzes elektrisch neutral ist. Sein magnetisches Moment ist das −1.91-fache des Kernmagnetons und zeigt also entgegengesetzt zu demjenigen des Protons. Es lässt sich erklären durch die Substruktur des Neutrons.
Die elektronischen g-Faktoren der ferromagnetischen Metalle Eisen, Kobalt und Nickel liegen nahe bei 2 (mit Abweichungen von nur etwa 10 %), d. h., dass der Magnetismus dieser Systeme überwiegend Spinmagnetismus ist mit nur einem geringen Bahnanteil.
Gyromagnetische Verhältnisse von Atomkernen
Auch für Kerne kann dieses Verhältnis gemessen und angegeben werden. In der folgenden Tabelle sind einige Werte angegeben.[4][5]
Kern | Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \gamma_n}
in 107 rad·s−1·T−1 |
Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \gamma_n / 2\pi}
in MHz·T−1 |
---|---|---|
1H | +26,752[6] | +42,577[7] |
2H | +4,1065 | +6,536 |
3He | −20,3789 | −32,434 |
7Li | +10,3962 | +16,546 |
13C | +6,7262 | +10,705 |
14N | +1,9331 | +3,077 |
15N | −2,7116 | −4,316 |
17O | −3,6264 | −5,772 |
19F | +25,1662 | +40,053 |
23Na | +7,0761 | +11,262 |
31P | +10,8291 | +17,235 |
129Xe | −7,3997 | −11,777 |
Siehe auch
Literatur
- Horst Stöcker: Taschenbuch der Physik. 4. Auflage, Verlag Harry Deutsch, Frankfurt am Main, 2000, ISBN 3-8171-1628-4.
- Hermann Haken, Hans Christoph Wolf: Atom- und Quantenphysik. 8. Auflage, Springer-Verlag, Berlin Heidelberg New York, 2004, S. 194 ff, ISBN 3-540-02621-5.
Einzelnachweise
- ↑ Manfred Hesse, Herbert Meier, Bernd Zeeh: Spektroskopische Methoden in der organischen Chemie. 7. Auflage, Georg Thieme Verlag, Stuttgart, 2005, ISBN 3-13-576107-X
- ↑ CODATA Recommended Values. National Institute of Standards and Technology, abgerufen am 16. Juli 2019. Wert für Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \gamma_p} . Die eingeklammerten Ziffern bezeichnen die Unsicherheit in den letzten Stellen des Wertes, diese Unsicherheit ist als geschätzte Standardabweichung des angegebenen Zahlenwertes vom tatsächlichen Wert angegeben.
- ↑ CODATA Recommended Values. National Institute of Standards and Technology, abgerufen am 16. Juli 2019. Wert für . Die eingeklammerten Ziffern bezeichnen die Unsicherheit in den letzten Stellen des Wertes, diese Unsicherheit ist als geschätzte Standardabweichung des angegebenen Zahlenwertes vom tatsächlichen Wert angegeben.
- ↑ M A Bernstein, K F King and X J Zhou: Handbook of MRI Pulse Sequences. Elsevier Academic Press, San Diego 2004, ISBN 0-12-092861-2, S. 960.
- ↑ R C Weast, M J Astle (Hrsg.): Handbook of Chemistry and Physics. CRC Press, Boca Raton 1982, ISBN 0-8493-0463-6, S. E66.
- ↑ proton gyromagnetic ratio. NIST. 2019.
- ↑ proton gyromagnetic ratio over 2 pi. NIST. 2019.