Radiant (Einheit)
Physikalische Einheit | |
---|---|
Einheitenname | Radiant |
Einheitenzeichen | |
Physikalische Größe(n) | Ebener Winkel |
Formelzeichen | |
Dimension | Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \mathsf{\frac{L}{L} = 1}} |
System | Internationales Einheitensystem |
In SI-Einheiten | Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \mathrm{1 \, rad = 1 \, \frac{1 \; m}{1 \; m} = 1}} |
Benannt nach | lateinisch radius, „Strahl“ |
Siehe auch: Winkelmaße |
Der Radiant (Einheitenzeichen: rad) ist ein Winkelmaß, bei dem der Winkel durch die Länge des entsprechenden Kreisbogens im Einheitskreis angegeben wird. Wegen der Betrachtung des Kreisbogens zur Kennzeichnung des Winkels wird die Angabe „im Bogenmaß“ auch Bogenwinkel genannt. Die Bogenlänge eines gegebenen Winkels ist proportional dem Radius Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle r} . Auf einem Kreis mit 5 cm Radius markiert ein Winkel von 1 rad also einen 5 cm langen Bogen. Der Vollkreis (360°) hat die Bogenlänge Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle U = 2} Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \pi} Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle r} , also beträgt der Vollwinkel Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle 2 \pi} rad.
In vielen Berechnungen der Physik und der Mathematik ist das Bogenmaß das zweckmäßigste Winkelmaß, siehe etwa Winkelgeschwindigkeit und Sinus und Kosinus.
Im Internationalen Einheitensystem (SI) ist Radiant der besondere Name für die kohärente, abgeleitete SI-Einheit m/m mit der Dimension Zahl. Er ist also eine Hilfsmaßeinheit und kann in Rechnungen einfach durch 1 ersetzt werden, d. h. 1 rad = 1. Die Einheit kann mit SI-Präfixen kombiniert werden, z. B. mrad für Milliradiant.[1]
In der Praxis wird das nachgestellte Einheitenkürzel rad häufig dann weggelassen, wenn das Winkelmaß als Vielfaches von Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \pi} angegeben wird, da dann eine Verwechslung mit den Angaben in Winkelgrad ° oder in gon unwahrscheinlich ist.
Umrechnung zwischen Radiant und Grad
Grad | Radiant |
---|---|
Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle 180^\circ} | |
Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle 90^\circ} | Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \frac12 \pi \approx 1{,}5708} |
Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle 45^\circ} | Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \frac{1}{4} \pi \approx 0{,}7854} |
Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle 57^\circ\, 17'\, 45''} | Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \approx 1} |
Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle 1^\circ} | Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \frac{\pi}{180} \approx 17{,}45\,\text{mrad}} |
Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle 3{,}44'} | Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle 1\,\text{mrad} = 0{,}001} |
Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle 1''} | Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle 4{,}85\,\mu \text{rad}} |
Wissenschaftliche Taschenrechner berechnen Winkelfunktionen wahlweise in Grad oder in Radiant, manchmal zusätzlich auch in Gon, wo der Vollwinkel 400 gon umfasst. Die Modi zur Berechnung heißen auf den meisten Taschenrechnern „DEG“ (von englisch degree für Grad) für das Gradmaß, „RAD“ für das Bogenmaß und „GRD“, „GRA“ oder „GRAD“ für das Gon-Winkelmaß, und sind manchmal über eine Kombitaste „DRG“ (von den Anfangsbuchstaben der Einheiten) zyklisch umschaltbar.
Winkelfunktionen in mathematischen Bibliotheken für Programmiersprachen und in Programmen zur Tabellenkalkulation verwenden in der Regel das Bogenmaß, Gradangaben müssen daher meist umgerechnet werden. Der Vollwinkel hat 2 Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \pi} Radiant oder 360 Grad, daher gilt:
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle 1\,\mathrm{rad} = \frac {360^\circ} {2 \pi} = \frac {180^\circ} {\pi} \approx 57{,}29577951^\circ }
oder:
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle 1^\circ = \frac{2\pi}{360}\,\mathrm{rad} = \frac{\pi}{180}\,\mathrm{rad} \approx 0{,}017453293\,\mathrm{rad} }
Der Faktor für die Umrechnung von Radiant auf Grad ist also Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \frac{180^\circ}{\pi} \ \left(= 1\,\mathrm{rad} = 1\right)}
Beispiele:
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \alpha = \frac{3}{2}\,\pi\,\mathrm{rad} = \frac{3}{2}\,\pi \cdot \frac{180^\circ}{\pi} = \frac{3}{2} \cdot 180^\circ = 270^\circ}
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \beta = 45^\circ = 45^\circ \cdot \frac{\pi}{\displaystyle 180^{\circ}} = \frac{\pi}{4} = \frac{\pi}{4}\,\mathrm{rad}}
Historisches
Im SI war zunächst offengelassen worden, ob Radiant und Steradiant abgeleitete Einheiten oder Basiseinheiten sind; für beide wurde die Klasse der „ergänzenden Einheiten“ geschaffen. 1980 empfahl das CIPM, diese ergänzenden Einheiten als abgeleitete zu interpretieren. Dem folgte 1995 die 20. CGPM und beschloss die Aufhebung der Klasse der ergänzenden Einheiten.[2]
Weblinks
Einzelnachweise
- ↑ Le Système international d’unités. 9e édition, 2019 (die sogenannte „SI-Broschüre“, französisch und englisch).
- ↑ Resolution 8 of the 20st CGPM (1995). Elimination of the class of supplementary units in the SI. Bureau International des Poids et Mesures, abgerufen am 12. April 2021 (englisch).