Henderson-Hasselbalch-Gleichung
Die Henderson-Hasselbalch-Gleichung, auch Puffergleichung genannt, beschreibt den Zusammenhang zwischen dem pH-Wert und der Lage des Gleichgewichts einer Säure-Base-Reaktion zwischen einer mittelstarken Säure und ihrer korrespondierenden mittelstarken Base in verdünnten (≤ 1 mol/l), wässrigen Lösungen.
Sie geht auf Lawrence J. Henderson und Karl Albert Hasselbalch zurück. Henderson entwickelte seine nach ihm benannte Gleichung 1908. Hasselbalch konnte die Henderson-Gleichung experimentell beim menschlichen Blut bestätigen und schrieb die Gleichung 1916 um, um statt der Wasserstoffionenkonzentration den pH-Wert zu berechnen. Fälschlicherweise wird die Gleichung, oft auch in Fachliteratur, als Henderson-Hasselbach-Gleichung bezeichnet.
Diese Gleichung wird insbesondere bei der pH-Wert-Berechnung von Pufferlösungen verwendet und beschreibt einen Teil des Verlaufs von Säure-Base-Titrationskurven von mittelstarken Säuren oder mittelstarken Basen. Sie leitet sich aus einer allgemeinen Säure-Base-Reaktion ab:
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \mathrm{HA + H_2O \rightleftharpoons\ A^- + H_3O^+}}
hierbei ist HA eine allgemeine Säure und A− ihre korrespondierende Base. Für diese Reaktionsgleichung lässt sich das Massenwirkungsgesetz unter Verwendung der Säurekonstante Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle K_\mathrm{S} = K \cdot c(\mathrm{H_2 O})} von HA formulieren. Nach Logarithmieren lassen sich unter Verwendung einfacher Umformungen der Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \mathrm{p}K_\mathrm{S} } -Wert
und der pH-Wert
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \mathrm{pH} = - \log_{10} \left[ c \left( \mathrm{{H}_{3}O^{+}} \right) \, \cdot \mathrm{\frac{l}{mol}} \right]}
in die Gleichung einführen, wodurch die Henderson-Hasselbalch-Gleichung entsteht. Von dieser gibt es zwei äquivalente Versionen, die sich mit einer für Logarithmen geltende Rechenregel ineinander überführen lassen:[1]
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \mathrm{pH} = \mathrm{p}K_\mathrm{S} + \log_{10} \frac{c \left( \mathrm{A^{-}} \right)}{c \left( \mathrm{HA}\right) }}
Mathematische Umformungen zur Herleitung der Henderson-Hasselbalch-Gleichung |
Zur Herleitung der Henderson-Hasselbalch-Gleichung aus der oben angegebenen Gleichung einer allgemeinen Säure-Base-Reaktion eignet sich folgende Form des Massenwirkungsgesetzes:
hierbei ist die Gleichgewichtskonstante. - Multiplikation der Gleichung mit Fehler beim Parsen (Konvertierungsfehler. Der Server („https://wikimedia.org/api/rest_“) hat berichtet: „Cannot get mml. Server problem.“): {\displaystyle c(\mathrm {H_{2}O} )\cdot \mathrm {\frac {l}{mol}} } und Einsetzen von ergibt: Logarithmieren zur Basis 10, Anwendung der Rechenregel für den Logarithmus von Produkten: Subtraktion der linken Seite und des linken Summanden der rechten Seite: Anwendung der im Text genannten Definitionen von und :
mit der Rechenregel für den Logarithmus von Quotienten:
eingesetzt: |
Im Pufferbereich der Säure-Base-Titration entspricht das Verhältnis dem Verhältnis Fehler beim Parsen (Konvertierungsfehler. Der Server („https://wikimedia.org/api/rest_“) hat berichtet: „Cannot get mml. Server problem.“): {\displaystyle {\frac {\tau }{1-\tau }}} , so dass man schreiben kann:
- Fehler beim Parsen (Konvertierungsfehler. Der Server („https://wikimedia.org/api/rest_“) hat berichtet: „Cannot get mml. Server problem.“): {\displaystyle \mathrm {pH} =\mathrm {p} K_{\mathrm {S} }-\log _{10}{\frac {\tau }{1-\tau }}}
(der Titrationsgrad) ist dabei das Verhältnis der Stoffmenge (bzw. der Konzentration) der zugefügten Maßlösung zur Stoffmenge (bzw. der Konzentration) des zu bestimmenden Stoffes.[2]
Im Bereich von bzw. bzw. bei stärkerer Verdünnung (unter 0,01 M) werden Berechnungen mit dieser Formel allerdings zunehmend ungenauer, da dann auch die geringe Protolyse von HA bzw. A− mit dem verwendeten Lösungsmittel bzw. die Autoprotolyse des Wassers um den pH-Wert 7 (z. B. beim Phosphatpuffer) mit in die Konzentrationsberechnung einfließen müssten, es bei Nichtberücksichtigung dieser Konzentrationen zu Abweichungen von bis zu 0,4 pH-Einheiten vom berechneten Wert kommen kann.
Für eine genaue Berechnung solcher pH-Werte leitet man sich die benötigten Gleichungen jeweils aus dem Massenwirkungsgesetz für die beteiligten Komponenten her, wobei exakterweise auch nicht mehr mit Konzentrationen, sondern Aktivitäten zu rechnen ist.
Um den oben genannten Teilverlauf von Säure-Base-Titrationskurven theoretisch aus der Henderson-Hasselbalch-Gleichung herzuleiten, lässt sich deren Schreibweise mit Titrationsgrad als eine Funktion Fehler beim Parsen (Konvertierungsfehler. Der Server („https://wikimedia.org/api/rest_“) hat berichtet: „Cannot get mml. Server problem.“): {\displaystyle \mathrm {pH} =f(\tau )} auffassen und mit Mitteln der Kurvendiskussion untersuchen. Hierbei liegen die definierten Argumente im offenen Intervall . Diese mathematische Untersuchung ergibt:
- ist überall streng monoton steigend. (1)
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle f(\tau)} hat genau einen Wendepunkt Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle W(\textstyle\tau =\frac{1}{2}|\mathrm{pH}=\mathrm{p}K_\mathrm{S})} , in dem die Steigung des Graphen von Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle f(\tau)} minimal ist, also der Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \mathrm{pH}} bei Veränderung von Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \tau} am wenigsten schwankt. (2)
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle f(\tau)} ist punktsymmetrisch zu Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle W} . (3)
Der Wendepunkt entpuppt sich als der Halbäquivalenzpunkt der alkalimetrischen Titration einer mittelstarken Säure. In einer geeigneten Umgebung von Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle W} (d. h. in einer solchen, in der die oben für Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \tau\approx 0} bzw. Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \tau\approx 1} genannten Effekte vernachlässigt werden können) stimmt der aus der Henderson-Hasselbalch-Gleichung theoretisch herleitbare Kurvenverlauf gut mit dem empirisch gefundenen überein. Insbesondere bedeutet die Aussage (2), dass im betrachteten Teilverlauf der Titration die Pufferung für Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \mathrm{pH}\approx \mathrm{p}K_\mathrm{S} } am stärksten ist.
Beweis der Behauptungen (1), (2), (3) mit Mitteln der Kurvendiskussion |
mit der Ableitungsregel für die konstante Funktion, Ableitung Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \textstyle \ln'(x) = \frac{1}{x}} , der Kettenregel und der Quotientenregel für die innere Funktion ist: dass der Funktionsterm Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \frac{1}{\ln(10)} \cdot \frac{1}{\tau(1-\tau)}} von Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle f'(\tau)} für alle Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \tau \in (0,1)} positiv ist, ist hinreichend für (1).
die Nennerfunktion von Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle f''(\tau)} ist für alle (von Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle 0} verschieden und daher) positiv, die Zählerfunktion ist eine überall streng monoton steigende lineare Funktion mit genau der Nullstelle Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \textstyle \tau =\frac{1}{2}} . Also hat auch Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle f''(\tau)} genau die Nullstelle Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \textstyle \tau =\frac{1}{2}} und ist für kleinere Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \tau} negativ, für größere Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \tau} positiv. Das ist hinreichend für (2'). Der Funktionswert des Wendepunktes ist
. |
Einzelnachweise
- ↑ Eintrag zu Henderson–Hasselbalch equation. In: IUPAC (Hrsg.): Compendium of Chemical Terminology. The “Gold Book”. doi:10.1351/goldbook.H02781.
- ↑ Hans P. Latscha, Uli Kazmaier, Helmut Klein: Chemie für Pharmazeuten, S. 157 ff.; ISBN 978-3540427551.