Homologietheorie
Eine Homologie (altgriechisch ὁμός homos, „ähnlich, gleich“, und
, hier: „Verhältnis, Analogie, Proportion“[1]) ist ein mathematisches Objekt. Sie ist eine Folge von mathematischen Objekten, den Homologiegruppen. Zu den wichtigsten Ausprägungen einer Homologie zählt die singuläre Homologie. Homologien wurden im Bereich der algebraischen Topologie entwickelt. Später wurden sie auch als rein algebraische Objekte betrachtet, woraus sich das Teilgebiet der homologischen Algebra entwickelte.
Die ursprüngliche Motivation dafür, Homologiegruppen zu definieren, war die Beobachtung, dass sich Formen durch ihre Löcher unterscheiden lassen (beispielsweise in der Klassifikation der Flächen). Da Löcher aber „nicht da“ sind, ist es nicht offensichtlich, wie man Löcher mathematisch definieren kann. Die Homologie ist ein mathematischer Ansatz, die Existenz von Löchern zu formalisieren. Gewisse „sehr feine“ Löcher sind für die Homologie unsichtbar; hier kann u. U. auf die schwerer zu bestimmenden Homotopiegruppen zurückgegriffen werden.
Im Bereich der algebraischen Topologie sind die Homologien beziehungsweise die Homologiegruppen Invarianten eines topologischen Raums, sie helfen also dabei, topologische Räume zu unterscheiden.
Konstruktion von Homologiegruppen
Man geht im Allgemeinen wie folgt vor: Einem mathematischen Objekt wird zunächst ein Kettenkomplex zugeordnet, der Information über enthält. Ein Kettenkomplex ist eine Folge von Moduln über einem festen Ring, verbunden durch Homomorphismen , so dass die Hintereinanderausführung je zweier dieser Abbildungen die Nullabbildung ist: für jedes . Dies bedeutet, dass das Bild der -ten Abbildung stets im Kern der -ten Abbildung enthalten ist. Man definiert nun die -te Homologiegruppe von als den Quotientenmodul
Ein Kettenkomplex heißt exakt, wenn das Bild der -ten Abbildung stets der Kern der -ten Abbildung ist; die Homologiegruppen von messen also, „wie unexakt“ der zugeordnete Kettenkomplex ist.
Beispiele
Das erste Beispiel stammt aus der algebraischen Topologie: die simpliziale Homologie eines simplizialen Komplexes . Hier ist der freie Modul über den -dimensionalen orientierten Simplizes von . Die Abbildungen heißen Randabbildungen und bilden das Simplex mit den Ecken
auf die alternierende Summe der „Randflächen“
ab.
Für Moduln über einem Körper (d. h. Vektorräume) beschreibt die Dimension der -ten Homologiegruppe von die Anzahl der -dimensionalen Löcher von .
Mit diesem Beispiel kann man eine simpliziale Homologie für jeden topologischen Raum definieren. Der Kettenkomplex für Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle X} wird so definiert, dass der freie Modul über allen stetigen Abbildungen vom Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle n} -dimensionalen Einheitssimplex nach ist. Die Homomorphismen Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle d_n} ergeben sich aus den simplizialen Randabbildungen.
In der homologischen Algebra benutzt man Homologie, um abgeleitete Funktoren zu definieren. Man betrachtet dort einen additiven Funktor Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle F} und einen Modul Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle X} . Der Kettenkomplex für Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle X} wird wie folgt konstruiert: Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle F_1} sei ein freier Modul und Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle p_1\colon F_1 \to X} ein Epimorphismus, sei ein freier Modul, der die Eigenschaft besitzen soll, dass ein Epimorphismus Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle p_2\colon F_2 \to \mathrm{ker}\,p_1} existiert, Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \ldots} Man erhält also eine Sequenz freier Moduln Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle F_n} und Homomorphismen Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle p_n\colon F_n \to F_{n-1}} und durch Anwendung von Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle F} einen Kettenkomplex. Die Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle n} -te Homologie Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle H_n} dieses Komplexes hängt, wie man zeigen kann, nur von und Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle X} ab. Man schreibt Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle H_n =: D^n F(X)} und nennt Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle D^nF} den -ten abgeleiteten Funktor von Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle F} .
Homologiefunktoren
Die Kettenkomplexe bilden eine Kategorie: Ein Morphismus – man sagt: eine Kettenabbildung – vom Kettenkomplex Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle (A_n, d^A_n)} in den Kettenkomplex ist eine Folge von Modulhomomorphismen Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle f_n\colon A_n \to B_n} , so dass Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle f_{n-1} \circ d^A_n = d_n^B \circ f_n} für jedes Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle n} . Die Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle n} -te Homologiegruppe Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle H_n} kann man als Funktor von der Kategorie der Kettenkomplexe in die Kategorie der Moduln über dem zugrunde liegenden Ring Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle R} auffassen.
Wenn der Kettenkomplex von Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle X} funktoriell abhängt (d. h. jeder Morphismus Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle X \to Y} induziert eine Kettenabbildung vom Kettenkomplex von Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle X} in den von Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle Y} ), dann sind die Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle H_n} Funktoren von der Kategorie, zu der Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle X} gehört, in die Kategorie der Moduln.
Ein Unterschied zwischen Homologie und Kohomologie liegt darin, dass die Kettenkomplexe in der Kohomologie kontravariant von Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle X} abhängen und daher die Homologiegruppen (die dann Kohomologiegruppen genannt werden und in diesem Kontext mit Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle H^n} bezeichnet werden) kontravariante Funktoren sind. Des Weiteren hat man meist auf der graduierten Kohomologiegruppe eine kanonische Ringstruktur, etwas Vergleichbares gibt es auf dem Niveau der Homologie nicht.
Eigenschaften
Ist Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle (A_n, d_n)} ein Kettenkomplex, so dass alle Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle A_n} endlich erzeugte freie Moduln sind, von denen höchstens endlich viele nicht null sind, dann kann man die Euler-Charakteristik
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \chi = \sum (-1)^n \, \mathrm{rank}\,(A_n) }
definieren. Man kann zeigen, dass die Euler-Charakteristik auch bezüglich der Homologie ausgedrückt werden kann:
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \chi = \sum (-1)^n \, \mathrm{rank}(H_n) }
In der algebraischen Topologie liefert das zwei Wege, die Invariante Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \chi} für das Objekt Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle X} , aus dem der Kettenkomplex erzeugt wurde, auszurechnen.
Jede kurze exakte Sequenz
von Kettenkomplexen liefert eine lange exakte Sequenz der Homologiegruppen
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \cdots \rightarrow H_n(A) \rightarrow H_n(B) \rightarrow H_n(C) \rightarrow H_{n-1}(A) \rightarrow H_{n-1}(B) \rightarrow H_{n-1}(C) \rightarrow H_{n-2}(A) \rightarrow \cdots \,}
Alle Abbildungen dieser exakten Sequenz sind durch die Abbildungen zwischen den Kettenkomplexen induziert, außer den Abbildungen Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle H_n(C) \rightarrow H_{n-1}(A) } , die verbindende Homomorphismen genannt werden und deren Existenz mit dem Schlangenlemma bewiesen wird.
Siehe auch
Weblinks
- Eric W. Weisstein: Homology. In: MathWorld (englisch).
Referenz
- ↑ Wilhelm Pape: Handwörterbuch der griechischen Sprache. Braunschweig 31914, Band 2, S. 58–61. Stichwort λόγος, Bedeutung C.5 (Online-Version)