Homotopiegruppe

aus Wikipedia, der freien Enzyklopädie

In der Mathematik, genauer in der algebraischen Topologie, sind die Homotopiegruppen ein Werkzeug, um topologische Räume zu klassifizieren. Die stetigen Abbildungen einer n-dimensionalen Sphäre in einen gegebenen Raum werden zu Äquivalenzklassen, den sogenannten Homotopieklassen, zusammengefasst. Dabei heißen zwei Abbildungen homotop, wenn sie stetig ineinander überführt werden können. Diese Homotopieklassen bilden eine Gruppe, die n-te Homotopiegruppe des Raumes genannt wird.

Anschaulich kann die Homotopiegruppe als Maß dafür verstanden werden, auf wie viele wesentlich unterschiedliche Arten die in den Raum abgebildet werden kann.[1]

Die erste Homotopiegruppe heißt auch Fundamentalgruppe.

Homotopieäquivalente topologische Räume haben isomorphe Homotopiegruppen. Haben zwei Räume verschiedene Homotopiegruppen, so können sie nicht homotopieäquivalent sein, somit auch nicht homöomorph. Für CW-Komplexe gilt nach einem Satz von Whitehead auch eine partielle Umkehrung.

Definition

In der Sphäre wählen wir einen Punkt , den wir Basispunkt nennen. Sei ein topologischer Raum und ein Basispunkt. Wir definieren als die Menge der Homotopieklassen stetiger Abbildungen (d. h. es ist ). Genauer gesagt, werden die Äquivalenzklassen durch Homotopien definiert, die den Basispunkt festhalten.[2] Äquivalent könnten wir als die Menge der Homotopieklassen relativ zu der stetigen Abbildungen definieren, d. h. derjenigen stetigen Abbildungen vom n-dimensionalen Einheitswürfel nach , die den Rand des Würfels in den Punkt abbilden. Dies ist auf zurückzuführen.

Für kann man die Menge der Homotopieklassen mit einer Gruppenstruktur versehen. Die Konstruktion der Gruppenstruktur von ähnelt der im Falle , also der Fundamentalgruppe. Die Idee der Konstruktion der Gruppenoperation in der Fundamentalgruppe ist das Hintereinanderdurchlaufen von Wegen, in der allgemeineren -ten Homotopiegruppe gehen wir ähnlich vor, nur, dass wir nun -Würfel entlang einer Seite zusammenkleben, d. h. wir definieren die Summe zweier Abbildungen durch

In der Darstellung durch Sphären ist die Summe zweier Homotopieklassen die Homotopieklasse derjenigen Abbildung, die man erhält, wenn man die Sphäre zunächst am Äquator entlang zusammenzieht und dann auf der oberen Sphäre f, auf der unteren g anwendet. Genauer: ist die Komposition der 'Äquatorzusammenzurrung' (Einpunktvereinigung) und der Abbildung .

Ist , so ist eine abelsche Gruppe. Zum Beweis dieser Tatsache beachte man, dass zwei Homotopien ab Dimension zwei umeinander "gedreht" werden können. Für ist das nicht möglich, da der Rand von nicht wegzusammenhängend ist.

Beispiele

Homotopiegruppen von Sphären

Für gilt , für folgt aus dem Satz von Hopf, dass

ist. Jean-Pierre Serre hat bewiesen, dass für eine endliche Gruppe sein muss.

Eilenberg-MacLane-Räume

Topologische Räume , die für alle erfüllen, heißen Eilenberg-MacLane-Räume mit .

Beispiele von -Räumen sind geschlossene, orientierbare Flächen mit Ausnahme der Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle S^2} , geschlossene, orientierbare, prime 3-Mannigfaltigkeiten mit Ausnahme der Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle S^2\times S^1} und alle CAT(0)-Räume, darunter lokal-symmetrische Räume von nichtkompaktem Typ, insbesondere hyperbolische Mannigfaltigkeiten.

Die lange exakte Sequenz einer Faserung

Ist Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle p\colon (E,e_0) \to (B, b_0)} eine Serre-Faserung mit Faser Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle F} , das heißt eine stetige Abbildung, die die Homotopiehochhebungseigenschaft für CW-Komplexe besitzt, so existiert eine lange exakte Sequenz von Homotopiegruppen

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \ldots\to \pi_n(F)\to\pi_n(E)\to\pi_n(B)\to\pi_{n-1}(F)\to\ldots\to\pi_0(E)\to\pi_0(B)\to 0}

Die Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \pi_0} betreffenden Abbildungen sind hier keine Gruppenhomomorphismen, da Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \pi_0} nicht gruppenwertig ist, sie sind aber exakt in dem Sinne, dass das Bild dem Kern (die Komponente des Basispunktes ist das ausgezeichnete Element) gleicht.

Beispiel: Die Hopf-Faserung

Die Basis Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle B} ist hier Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle S^2} und der Totalraum Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle E} ist Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle S^3} . Sei Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle p \colon S^3 \to S^2} die Hopfabbildung, die die Faser Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle S^1} hat. Aus der langen exakten Sequenz

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \ldots\to \pi_n(S^1)\to\pi_n(S^3)\to\pi_n(S^2)\to\pi_{n-1}(S^1)\to\ldots}

und der Tatsache, dass Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \pi_n(S^1) = 0} für Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle n \ge 2} , folgt, dass Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \pi_n(S^2) = \pi_n(S^3)} für Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle n \ge 3} gilt. Insbesondere ist Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \pi_3(S^2) = \mathbb Z. }

n-Äquivalenzen und schwache Äquivalenzen. Der Satz von Whitehead

Eine stetige Abbildung Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle f\colon X\to Y} heißt Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle n} -Äquivalenz, wenn die induzierte Abbildung Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \pi_k(X)\to\pi_k(Y)} für Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle k<n} ein Isomorphismus und für Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle k=n} eine Surjektion ist. Ist die Abbildung für alle Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle k} ein Isomorphismus, so nennt man die Abbildung eine schwache Äquivalenz.[3]

Ein Satz von J. H. C. Whitehead besagt, dass eine schwache Äquivalenz zwischen zusammenhängenden CW-Komplexen bereits eine Homotopieäquivalenz ist. Falls Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle X} und Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle Y} Dimension kleiner als Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle n} haben, so genügt bereits, dass Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle f} eine Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle n} -Äquivalenz ist.[4]

Homotopie und Homologie. Der Satz von Hurewicz

Für punktierte Räume Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle X} gibt es kanonische Homomorphismen von den Homotopiegruppen in die reduzierten Homologiegruppen

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle h_n\colon\pi_n(X)\to\tilde H_n(X,\mathbb Z),}

die Hurewicz-Homomorphismen (nach Witold Hurewicz) genannt werden. Ein Satz von Hurewicz besagt: Ist Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle X} ein Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle (n-1)} -zusammenhängender Raum, d. h. gilt Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \pi_k(X)=0} für Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle k<n} , dann ist der Hurewicz-Homomorphismus Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle h_n} im Fall Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle n=1} die Abelisierung und für Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle n>1} ein Isomorphismus.[5]

Relative Homotopiegruppen

Man kann auch relative Homotopiegruppen Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \pi_n(X,A,a)} für Raumpaare Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle (X,A)} definieren, ihre Elemente sind Homotopieklassen von Abbildungen Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle (B^n, S^{n-1}, b) \to (X,A,a)} , zwei solche Abbildungen Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle f} und Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle g} heißen dabei homotop, wenn es eine Homotopie Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle F\colon (B^n \times I, S^{n-1} \times I, b \times I) \to (X,A,a)} gibt. Man erhält die absoluten Homotopiegruppen im Spezialfall Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle A = \{a\}} .

Für jedes Raumpaar gibt es eine lange exakte Sequenz

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \ldots\to\pi_{n+1}(X,A)\to\pi_n(A)\to\pi_n(X)\to\pi_n(X,A)\to\ldots\to\pi_0(X)}

Literatur

  • J. P. May, A Concise Course in Algebraic Topology. University of Chicago Press, Chicago 1999. ISBN 0-226-51183-9.

Weblinks

Quellen

  1. Fridtjof Toenniessen: Topologie: Ein Lesebuch von den elementaren Grundlagen bis zur Homologie und Kohomologie. Springer Berlin Heidelberg, 2017, ISBN 978-3-662-54963-6 (google.com [abgerufen am 31. Dezember 2021]).
  2. Es ist wichtig, hier nur Homotopien zuzulassen, die den Basispunkt festlassen. Die Menge Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \left[S^n,X\right]} der freien Homotopieklassen hat keine natürliche Gruppenstruktur und sie ist im Allgemeinen nicht in Bijektion zu Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \pi_n(X,b)} . Man hat eine surjektive Abbildung Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \pi_n(X,b)\to \left[S^n,X\right]} , unter der zwei Elemente genau dann derselben freien Homotopieklasse entsprechen, wenn sie im selben Orbit der Wirkung von Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \pi_1(X,b)} auf Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \pi_n(X,b)} liegen.
  3. J. P. May, A Concise Course in Algebraic Topology. University of Chicago Press, Chicago 1999. ISBN 0-226-51183-9, Abschnitt 9.6
  4. J. P. May, A Concise Course in Algebraic Topology. University of Chicago Press, Chicago 1999. ISBN 0-226-51183-9, Abschnitt 10.3
  5. J. P. May, A Concise Course in Algebraic Topology. University of Chicago Press, Chicago 1999. ISBN 0-226-51183-9, Abschnitt 15.1