Konsistenz (Numerik)
In der numerischen Mathematik ist die Konsistenz beziehungsweise die Konsistenzordnung eine Eigenschaft eines numerischen Verfahrens, die bedeutet, dass der Algorithmus in einer gewissen grundlegenden Weise tatsächlich das gegebene Problem löst und nicht ein anderes.
Die drei in der Numerik entscheidenden Fehlerbewertungskriterien sind Kondition, Stabilität und Konsistenz. Alle drei Größen analysieren die Entstehung von Fehlern, unterscheiden sich aber in der Art der Fehlerquellen. Die Konditionsbewertung geht davon aus, dass der Algorithmus genau funktioniert, jedoch die Eingabedaten gestört sind. Die Stabilität vergleicht das Ergebnis des numerischen Verfahrens mit dem des exakten Verfahrens unter gestörten Eingabedaten.
Die Konsistenz beschäftigt sich nun mit der Frage, was passiert, wenn die exakte Lösung im numerischen Verfahren verarbeitet wird. Die aufgeführten Beispiele sind numerische Differentiation oder Lösung eines Anfangswertproblems. Hier wird der entstehende Fehler in Abhängigkeit von einem gewählten Gitter oder einer gewählten Schrittweite betrachtet.
Definition
Gegeben sei ein kontinuierliches Problem und die exakte Lösung Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle u(t)} sowie die numerische Lösung Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle u_h(t)} zu einer Schrittweite Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle h > 0} . Das Verfahren heißt konsistent, falls es eine Funktion Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \sigma (h)} mit Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \lim_{h \to 0} \sigma (h) = 0} gibt, so dass für den lokalen Fehler gilt (das Verfahren startet mit exakten Anfangsdaten)
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \forall n \in \N_0 \colon \| u(n h) - u_h(n h) \| \leq \sigma(h)} .
Es besitzt die Konsistenzordnung Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle p \in \N} , falls Fehler beim Parsen (Konvertierungsfehler. Der Server („https://wikimedia.org/api/rest_“) hat berichtet: „Cannot get mml. Server problem.“): {\displaystyle \sigma (h)\in {\mathcal {O}}(h^{p})} .
Das bedeutet, dass man zu jedem Zeitpunkt (oder auch Ort) eine Fehlerschranke in Abhängigkeit von der gewählten Schrittweite hat. Es ist klar, dass in der Praxis Verfahren dieses Verhalten nur zeigen, wenn man eine hinreichend kleine Schrittweite wählt (vgl. Stabilität).
Viele solcher Konsistenzabschätzungen werden mit Hilfe des Satzes von Taylor bewiesen, aus dem einfachen Grund, dass viele Verfahren die ersten Glieder der Taylorreihe (die abhängig von einer Schrittweite Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle h} ist) verwenden, um ausgehend von der Lösung zum aktuellen Zeitpunkt die Lösung für den nächsten Zeitpunkt darzustellen:
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle f(x+h) = f(x) + h f'(x) + h^2 \frac{f''( \xi )}{2} } .
Die Konstante Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle c} ist dann das Restglied Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle f''(\xi)} bzw. eine Supremumsnormabschätzung.
Definition im Falle der Einschrittverfahren
Wir gehen vom Anfangswertproblem
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle y'(x) = f(x,y(x)),\quad y(x_i) = y_i }
aus, wobei Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle y} die Lösung des Anfangswertproblems ist und Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle y_{i+1}} durch Anwendung der Methode auf Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle y_i} mit Schrittweite Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle h > 0} erzeugt wurde. Außerdem sei Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle f} unendlich oft differenzierbar und lokal Lipschitz-stetig.
Ein Einschrittverfahren heißt konsistent, falls für jede rechte Seite Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle f} gilt[1]
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \underset{h \rightarrow 0}{\limsup} \underset{x_i \in [a,b], y_i \in \R^d}{\sup} \frac{|y_{i+1}- y(x_i + h)|}{h^{p+1}}< \infty } ,
d. h., Konstanten Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle C > 0, h_0 > 0 } existieren, sodass
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \underset{x_i \in [a,b], y_i \in \R^d}{\sup} |y_{i+1} - y(x_i + h)| \le Ch^{p+1}}
für alle .
Eine Methode der Konsistenzordnung Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle p} macht in jedem Intervall Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle [x_i,x_{i+1}]} einen lokalen Fehler der Ordnung Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle h^{p+1}} .
Beispiele
Differentiation
Eine Möglichkeit, die Ableitung einer Funktion Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle f} in einem Punkt Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle x} zu errechnen, ist die Benutzung von Differenzenquotienten, sofern Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle f} hinreichend oft differenzierbar ist. Wir betrachten zwei Verfahren:
- Den einfachen Differenzenquotienten
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle f'(x) \approx \frac{f(x+h)-f(x)}{h}} und
- den zentralen Differenzenquotienten
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle f'(x) \approx \frac{f(x+h)-f(x-h)}{2h}} .
Die Taylorentwicklungen
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle f(x + h) = f(x) + f'(x)h + \frac{f''(\xi)h^2}{2}}
bzw.
- Fehler beim Parsen (Konvertierungsfehler. Der Server („https://wikimedia.org/api/rest_“) hat berichtet: „Cannot get mml. Server problem.“): {\displaystyle f(x\pm h)=f(x)\pm f'(x)h+{\frac {f''(x)h^{2}}{2}}\pm {\frac {f'''(\xi )h^{3}}{6}}}
liefern dann für den einfachen Differenzenquotienten
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \frac{f(x+h)-f(x)}{h} = f'(x)+ \frac{f''( \xi )}{2} \, h}
bzw. für den zentralen Differenzenquotienten
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \frac{f(x+h)-f(x-h)}{2h} = f'(x)+ \frac{f'''( \xi_1 ) + f'''(\xi_2)}{12} \, h^2} .
Über Umstellen und Anwenden der Norm im Bildbereich von Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle f} erhalten wir dann
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \left\|f'(x)- \frac{f(x+h)-f(x)}{h} \right\| =\left\| \frac{f''( \xi )}{2} h \right\| \leq \frac{1}{2} \left\|f''\right\|_{\infty}h }
bzw.
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \left\| f'(x)- \frac{f(x+h)-f(x-h)}{2h}\right\| = \left\|\frac{f'''( \xi_1 ) + f'''(\xi_2)}{12} \, h^2\right\|\leq \frac{2}{12} \left\|f'''\right\|_{\infty}h^2= \frac{1}{6} \left\|f'''\right\|_{\infty}h^2} ,
also Konsistenzordnung eins, Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle O(h)} , bzw. zwei, Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle O(h^2)} . Man erkennt, dass man mit ähnlichem Rechenaufwand (je zwei Funktionsauswertungen und im Wesentlichen eine Division) mittels des zentralen Differenzenquotienten eine höhere Konsistenzordnung erreicht.
Gewöhnliche Differentialgleichungen
Zum diskreten Lösen eines Anfangswertproblems kann man Einschrittverfahren, z. B. Runge-Kutta-Verfahren, verwenden. Ein solches hat die Konsistenzordnung p, wenn es die lokale Fehlerordnung p+1 hat.
Das einfachste Einschrittverfahren ist das explizite Eulerverfahren (Euler’sches Polygonzugverfahren).
Dabei wird die exakte Lösung einer Differentialgleichung
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle u'(t) = f(t, u(t))} und Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle u(t_0) = u_0}
numerisch approximiert durch die stückweise lineare Funktion
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle u_h(t_n+\tau) = u_h(t_n) + \tau\, f(t_n, u_h(t_n))} mit Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle t_n=t_0+nh} und Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \tau\in[0,h]}
mit Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle u_h(t_0) = u_0} und Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle u_h(t_{n+1})=u_h(t_n+h)} .
Man kann auch hier mit der Taylorentwicklung
- Fehler beim Parsen (Konvertierungsfehler. Der Server („https://wikimedia.org/api/rest_“) hat berichtet: „Cannot get mml. Server problem.“): {\displaystyle u(t+h)=u(t)+h\,u'(t)+{\frac {h^{2}}{2}}\,u''(t)+o(h^{2})=u(t)+h\,f(t,u(t))+O(h^{2})}
die lokale Fehlerordnung 2 und damit die Konsistenz von Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle O(h)} , d. h. Konsistenzordnung 1, nachweisen, sofern Fehler beim Parsen (Konvertierungsfehler. Der Server („https://wikimedia.org/api/rest_“) hat berichtet: „Cannot get mml. Server problem.“): {\displaystyle u\in C^{2}([t_{0},t_{f}])} .
Einzelnachweise
- ↑ von Harrach, Bastian: Numerik von Differentialgleichungen. 25. Juli 2017, S. 23, abgerufen am 30. Januar 2018.