Laminierung (Mathematik)

aus Wikipedia, der freien Enzyklopädie

In der Mathematik verallgemeinern Laminierungen den topologischen Begriff der Blätterung.

Laminierungen sind von Bedeutung in der komplexen Dynamik, insbesondere in der Iterationstheorie quadratischer Abbildungen.

Laminierungen eines topologischen Raumes

Es sei Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle X} ein Hausdorff-Raum. Eine Laminierung ist gegeben durch eine offene Überdeckung Fehler beim Parsen (Konvertierungsfehler. Der Server („https://wikimedia.org/api/rest_“) hat berichtet: „Cannot get mml. Server problem.“): {\displaystyle \textstyle X=\bigcup _{i}U_{i}} und Homöomorphismen

,

wobei Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle D_i} eine offene Teilmenge eines Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \R^n} und Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle T_i} ein beliebiger topologischer Raum ist.

[[Hilfe:Cache|Fehler beim Thumbnail-Erstellen]]:
Eine Laminierung der Kreisscheibe. Die Ränder der Blätter bilden eine Laminierung des Kreises.

Laminierungen von Mannigfaltigkeiten

Es sei Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle M} eine Mannigfaltigkeit. Eine Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle k} -dimensionale Laminierung von Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle M} ist eine Zerlegung einer abgeschlossenen Teilmenge von Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle M} in zusammenhängende Untermannigfaltigkeiten gleicher Dimension (die Blätter der Laminierung), so dass es eine Überdeckung von Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle M} durch Karten homöomorph zu Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle I^k\times I^{n-k}} gibt, in der die Durchschnitte der Blätter mit den Karten den Hyperebenen Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle I^k\times\left\{y\right\}} für jeweils ein Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle y\in I^{n-k}} entsprechen.

Laminierungen des Kreises

Eine etwas abweichende Terminologie verwendet man in der Theorie dynamischer Systeme, wenn es um Laminierungen des Kreises geht. In diesem Fall sollen die Blätter nicht zusammenhängend, sondern Paare von Punkten sein, wobei unterschiedliche Punktpaare jeweils nicht verschlungen sein dürfen. (D.h. wenn Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \left\{x_1,x_2\right\}} ein Blatt und Fehler beim Parsen (Konvertierungsfehler. Der Server („https://wikimedia.org/api/rest_“) hat berichtet: „Cannot get mml. Server problem.“): {\displaystyle \left\{y_{1},y_{2}\right\}} ein anderes Blatt ist, dann müssen und Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle y_2} beide in derselben Zusammenhangskomponente von Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle S^1\setminus \left\{x_1,x_2\right\}} liegen.)

Wenn man sich den Kreis als Rand im Unendlichen der hyperbolischen Ebene denkt, entsprechen die Laminierungen des Kreises also genau den geodätischen Laminierungen der hyperbolischen Ebene. (Die Ränder zweier Geodäten sind genau dann unverschlungen, wenn die beiden Geodäten disjunkt sind.)

Anwendungen

Spezielle Klassen von Laminierungen sind von Bedeutung in der niedrig-dimensionalen Topologie und Dynamik.

Literatur

  • Danny Calegari: Foliations and the geometry of 3-manifolds. Oxford Mathematical Monographs. Oxford University Press, Oxford, 2007. ISBN 978-0-19-857008-0

Weblinks