Legendre-Polynom
Die Legendre-Polynome (nach Adrien-Marie Legendre), auch zonale Kugelfunktionen genannt, sind spezielle Polynome, die auf dem Intervall ein orthogonales Funktionensystem bilden. Sie sind die partikulären Lösungen der legendreschen Differentialgleichung. Eine wichtige Rolle spielen die Legendre-Polynome in der theoretischen Physik, insbesondere in der Elektrodynamik und in der Quantenmechanik, sowie im Bereich der Filtertechnik bei den Legendre-Filtern.
Differentialgleichung und Polynome
Legendresche Differentialgleichung
Die legendresche Differentialgleichung
kann als gewöhnliche lineare Differentialgleichung zweiter Ordnung auch in der Form
für und dargestellt werden.
Sie ist ein Spezialfall der Sturm-Liouville-Differentialgleichung
Die allgemeine Lösung dieser Differentialgleichung lautet
mit den beiden linear unabhängigen Funktionen und . Man bezeichnet die Legendre-Polynome daher auch als Legendre-Funktionen 1. Art und als Legendre-Funktionen 2. Art, denn diese sind keine Polynome mehr.
Darüber hinaus existiert noch eine verallgemeinerte Legendresche Differentialgleichung, deren Lösungen zugeordnete Legendrepolynome heißen.
Erste Polynome
Die ersten Legendre-Polynome lauten:
Das -te Legendre-Polynom lautet
mit der Gauß-Klammer
Das -te Legendre-Polynom hat den Grad und ist aus Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \mathbb Q[x]} , d. h., es hat rationale Koeffizienten. Für die Legendre-Polynome gibt es mehrere Darstellungsformen.
Konstruktion orthogonaler Polynome
Für ein Intervall Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle I = [a,b]} und eine darauf gegebene Gewichtsfunktion Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle w(x)} ist eine Folge Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle (P_n)} von reellen Polynomen Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle P_n\in\R[X]} orthogonal, wenn sie die Orthogonalitätsbedingung
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \int\limits_a^b w(x) \, P_n(x) \, P_m(x) \, \mathrm{d}x = 0}
für alle Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle m, n\in\N_0} mit Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle m\neq n} erfüllt.
Für das Intervall Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle I = [-1,1]} zusammen mit der einfachsten aller Gewichtsfunktionen Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle w(x) = 1} können solche orthogonalen Polynome mit Hilfe des Gram-Schmidtschen Orthogonalisierungsverfahrens ausgehend von den Monomen Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle (x^n)_{n\in \N}} iterativ erzeugt werden. Die Legendre-Polynome ergeben sich, wenn dabei zusätzlich Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle P_n(1) = 1} gefordert wird.
Eigenschaften
Rodrigues-Formel
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle P_n(x) = \frac{1}{2^n\,n!}\cdot \frac{\mathrm{d}^n}{\mathrm{d}x^n} \bigg( (x^2 -1)^n \bigg) }
Die Rodrigues-Formel kann man mit der Formel von Faà di Bruno auswerten und erhält wieder die explizite Form des Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle n} -ten Legendre-Polynoms.
Integraldarstellung
Für alle Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle x \in \mathbb{C} \setminus \{+1, -1\}} gilt
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle P_n(x) = \frac{1}{\pi} \int_0^\pi \left(x + \sqrt{x^2 - 1} \cos\varphi\right)^n \, \mathrm{d}\varphi}
Rekursionsformeln
Für die Legendre-Polynome gelten folgende Rekursionsformeln:
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \begin{align} (n+1)P_{n+1}(x) &= (2n+1)xP_n(x)-nP_{n-1}(x) \,\,\,\,\,\quad\quad (n=1,2,\ldots; P_0=1; P_1=x)\\ (x^2-1) \frac{\mathrm{d}}{\mathrm{d}x } P_n(x) &= n xP_n(x)-nP_{n-1}(x) \end{align}}
Die erste rekursive Formel lässt sich mittels der Substitution Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle n'=n+1} in folgender, häufig zu findender Weise darstellen:
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle nP_{n}(x) = (2n-1)xP_{n-1}(x)-(n-1)P_{n-2}(x) \,\,\,\,\,\qquad (n=2,3,\ldots; P_0=1; P_1=x) }
Durch Anwendung der Ableitungsregel für Ausdrücke der Art Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle y = x^n } mit Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle y'=nx^{n-1} = nx^{-1}y} , bzw. Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle y^{(m)} = (n-m+1)x^{-1}y^{(m-1)}} ergibt sich folgende rekursive Darstellung der Legendre-Polynome, welche auch die Ableitungen dieser Polynome berücksichtigt:
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle (n-m)P_{n}^{(m)}(x) = (2n-1)xP_{n-1}^{(m)}(x)-(n-1+m)P_{n-2}^{(m)}(x) \,\,\,\,\,\qquad (n>1;\,\, m=0\ldots n-1) }
Die Anfangsbedingungen lauten Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle P_m^{(m)}(x)=\frac{(2m)!}{2^m m!}} und Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle P_{k}^{(m)}(x)={0} \,\,\,\,\,\qquad (k<m) } .
Bei Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle m=0} ergibt sich wiederum die weiter oben angegebene Formel mit ihren Anfangsbedingungen.
Vollständiges Orthogonalsystem
Man betrachte den Hilbertraum Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle V:= L^2([-1,1]; \R)} der quadratintegrierbaren auf Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle [-1,1]} definierten reellwertigen Funktionen ausgestattet mit dem Skalarprodukt
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \langle f,g \rangle = \int_{-1}^1f(x)g(x)\mathrm{d}x} .
Die Familie Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle (P_n)_n} der Legendre-Polynome bildet auf Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle (V, \langle\cdot,\cdot\rangle)} ein vollständiges Orthogonalsystem, sie sind also ein Spezialfall von orthogonalen Polynomen. Normiert man diese, so bilden sie ein vollständiges Orthonormalsystem auf Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle V} .
Es gilt
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \int\limits_{-1}^{1} P_n(x) P_m(x)\, \mathrm{d}x = \frac{2}{2n+1} \delta_{nm}} ,
wobei Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \delta_{nm}} das Kronecker-Delta bezeichnet. Dabei bedeutet die Vollständigkeit, dass sich jede Funktion Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle f\in V } in der von Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \langle\cdot,\cdot\rangle } erzeugten Normtopologie nach Legendre-Polynomen „entwickeln“ lässt:
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle f(x) = \sum_{n=0}^\infty c_n \, P_n(x)}
mit den Entwicklungskoeffizienten
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle c_n = \frac{2\,n+1}{2} \, \int\limits_{-1}^1 f(x)\,P_n(x) \, \mathrm{d}x.}
In der physikalischen oder technischen Literatur wird die Vollständigkeit gern wie folgt als Distributionsgleichung geschrieben:
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \sum_{n=0}^\infty \frac{2\,n+1}{2} \, P_n(x') \, P_n(x) = \delta(x'-x)} ,
wobei Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \delta} die diracsche Delta-Distribution ist. Eine solche Distributionsgleichung ist immer so zu lesen, dass beide Seiten dieser Gleichung auf Testfunktionen anzuwenden sind. Wendet man die rechte Seite auf eine solche Testfunktion Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle x\mapsto f(x)} an, so erhält man Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle f(x')} . Zur Anwendung der linken Seite muss man definitionsgemäß mit Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle f(x)} multiplizieren und anschließend über Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle x} integrieren. Dann erhält man aber genau obige Entwicklungsformel (mit Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle x'} an Stelle von Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle x} ). Orthogonalität und Vollständigkeit lassen sich daher kurz und prägnant wie folgt schreiben:
- Orthogonalität: Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \langle P_n, P_m \rangle = 0} für Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle m \neq n} .
- Vollständigkeit: Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle f(x) = \sum_{n=0}^\infty \frac{2n+1}{2}\langle f,P_n\rangle \, P_n(x)} für alle Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle f\in L^2([-1,1]; \R)} (im Sinne der Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle L^2} -Konvergenz).
Nullstellen
Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle P_n(x)} hat auf dem Intervall Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle I = [-1,1]} genau Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle n} einfache Nullstellen. Sie liegen symmetrisch zum Nullpunkt der Abszisse, da Legendre-Polynome entweder gerade oder ungerade sind. Zwischen zwei benachbarten Nullstellen von Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle P_n(x)} liegt genau eine Nullstelle von Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle P_{n-1}(x)} . In welchem Verhältnis eine Nullstelle von Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle P_{n-1}(x)} das Intervall zwischen zwei Nullstellen von Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle P_n(x)} teilt, oder auch umgekehrt bis auf die äußeren von Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle P_n(x)} , ist dabei sehr variabel.
Die Bestimmung der Nullstellen der Legendre-Polynome ist in der numerischen Mathematik eine häufige Aufgabe, da sie eine zentrale Rolle bei der Gauß-Legendre-Quadratur oder der unter „Vollständiges Orthogonalsystem“ erwähnten Entwicklung „beliebiger“ Funktionen nach Polynomen spielen. Es gibt zwar zahlreiche Tabellenwerke dafür, aber oft ist ihr Gebrauch mit Unannehmlichkeiten verbunden, weil man für eine flexible Reaktion eine Vielzahl an Tabellen in geeigneten Genauigkeiten vorhalten müsste. Bei der Nullstellensuche ist die Kenntnis des Intervalls nur von beschränktem Wert bei der Wahl eines Iterationsanfangs, zumal auch noch die Kenntnis der Nullstellen eines anderen Polynoms erforderlich ist. Eine mit zunehmendem Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle n} genauer werdende Näherung der Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle k} -ten Nullstelle Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle x_k} von Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle P_n(x)} ist gegeben durch:[1][2]
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle x_k \approx \cos\left(\pi\,\frac{4k-1}{4n+2}\right),\quad k=1,\ldots,n.}
Für beispielsweise Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle P_{10}(x)} werden so alle Nullstellen auf wenigstens zwei Dezimalstellen genau abgeschätzt, mit Fehlern zwischen Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle 0{,}00102} und Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle 0{,}00016} , während das kleinste Nullstellenintervall von Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle P_{9}(x)} nur Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle 0{,}13} ist. Bei Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle P_{20}(x)} sind bereits drei Dezimalstellen sicher, mit Fehlern zwischen Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle 0{,}00028} und Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle 0{,}00002} , während die beste Einschachtelung durch Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle P_{19}(x)} nur Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle 0{,}032} ist. Der maximale Schätzfehler für Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle P_{200}(x)} ist nur Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle 0{,}0000031} bei den beiden fünften Nullstellen von außen, deren exakter Betrag mit Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle 0{,}99722851428\ldots} beginnt.
Mit einem solchen Startwert und den beiden ersten „Rekursionsformeln“ lassen sich mit einem Rechengang sowohl der Funktionswert als auch dessen Ableitung bestimmen. Mithilfe des Newton-Verfahrens lassen sich alle Nullstellen bis auf die beiden äußeren mit mehr als quadratischer Konvergenz finden, da sich die Nullstellen in unmittelbarer Nähe der Wendestellen befinden. Die beiden äußeren Nullstellen konvergieren „nur“ quadratisch, d. h. ein anfänglicher Abstand zur Nullstelle von Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle 0{,}00102} verkleinert sich nach einer Iteration zunächst auf ungefähr Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle 0{,}00102^2} , dann auf Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle 0{,}00102^4, 0{,}00102^8} und Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle 0{,}00102^{16}} .
Die angegebene Abschätzung ist Teil eines sehr kurzen Algorithmus, die sowohl alle Nullstellen eines Legendre-Polynoms als auch die passenden Gewichte für die Gauß-Legendre-Quadratur liefert.
Allgemeine Eigenschaften
Für jedes Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle n \in \N} und jedes Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle x \in [-1,1]} gilt:
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \begin{align} & P_n(1) = 1\\& P_n(-x) = (-1)^n \, P_n(x)\\& P_{2n}(0) = (-1)^n \frac{1 \cdot 3 \cdot \ldots \cdot (2n-1)}{2 \cdot 4 \cdot \ldots \cdot 2n}\\& P_{2n+1}(0) = 0\\& P'_n(0) = nP_{n-1}(0) \end{align} }
Erzeugende Funktion
Für alle Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle x \in \mathbb{R}} , Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle z \in \mathbb{C}} , Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle |z| < 1} gilt
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle (1 - 2xz + z^2)^{-1/2} = \sum_{n=0}^\infty P_n(x) z^n\ .}
Dabei hat die Potenzreihe auf der rechten Seite für Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle -1 \le x \le +1} den Konvergenzradius 1.
Die Funktion Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle z \mapsto (1 - 2xz + z^2)^{-1/2}} wird daher als erzeugende Funktion der Legendre-Polynome Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle P_n} bezeichnet.
Der in der Physik oft auftretende Term Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle 1/|\vec{x}-\vec{x}\,'|} (z. B. in den Potentialen der newtonschen Gravitation oder der Elektrostatik; Multipolentwicklung) lässt sich damit in eine Potenzreihe entwickeln für Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \tfrac{|\vec{x}\,'|}{|\vec{x}|}=\tfrac{r\,'}{r}<1} :
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \begin{align} \frac{1}{|\vec{x}-\vec{x}\,'|} &=\frac{1}{\sqrt{\vec{x}\,^{2}-2\vec{x}\cdot\vec{x}\,'+\vec{x}\,'^{2}}} =\frac{1}{\sqrt{r^{2}-2rr\,'\cos\alpha+r\,'^{2}}} =\frac{1}{r\sqrt{1-2\frac{r'}{r}\cos\alpha+(\frac{r'}{r})^{2}}} \\&=\frac{1}{r}\sum_{n=0}^{\infty}\left(\frac{r\,'}{r}\right)^{n}P_{n}(\cos\alpha) \end{align}}
Legendre-Funktionen 2. Art
Die Rekursionsformeln der Legendre-Polynome gelten auch für die Legendre-Funktionen 2. Art, so dass diese sich iterativ mit der Angabe der ersten bestimmen lassen:
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle Q_0(x) = \frac{1}{2}\,\ln\left( \frac{1+x}{1-x} \right) = \operatorname{artanh}(x)}
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle Q_1(x) = \frac{x}{2}\,\ln\left( \frac{1+x}{1-x} \right) - 1 =x \operatorname{artanh}(x) - 1}
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle Q_2(x) = \frac{3\,x^2 - 1}{4} \, \ln\left( \frac{1+x}{1-x} \right) - \frac{3\,x}{2} = \frac 3 2 \left( \left(x^2-\frac 1 3 \right) \operatorname{artanh}(x) -x\right) }
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle Q_3(x) = \frac{5\,x^3 - 3\,x}{4} \, \ln\left( \frac{1+x}{1-x} \right) - \frac{5\,x^2}{2} + \frac{2}{3}}
Hierbei ist für den Logarithmus der Hauptzweig zu verwenden, wodurch sich Singularitäten bei Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle x=\pm 1} und in der komplexen Ebene Verzweigungsschnitte[3] entlang Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle (-\infty,-1)} und Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle (1,\infty)} ergeben.
Anwendungsgebiete
Unter Anderem wird das Legendre-Polynom für Simulationen von Kugelsphären verwendet, so zum Beispiel zur Ermittlung des Taylor-Winkels im Taylor-Kegel, welcher beim Elektrospinnen der Geometrie zu Grunde liegt.
Weblinks
- Eric W. Weisstein: Legendre Polynomial. In: MathWorld (englisch).
- J. B. Calvert: Legendre Polynomials. (englisch)
Einzelnachweise
- ↑ Numerical Recipes: Codeausschnitt aus Numerical Recipes in C, Seite 152: „z=cos(3.141592654*(i-0.25)/(n+0.5));“
- ↑ Abramowitz-Stegun: Handbook of Mathematical Functions. Asymptotische Entwicklung der Nullstellen in Formel 22.16.6, Seite 787
- ↑ Branch Cut. Wolfram Research, abgerufen am 19. September 2018.