Kronecker-Delta

aus Wikipedia, der freien Enzyklopädie

Das Kronecker-Delta ist ein mathematisches Zeichen, das durch ein kleines Delta mit zwei Indizes (typischerweise Fehler beim Parsen (Konvertierungsfehler. Der Server („https://wikimedia.org/api/rest_“) hat berichtet: „Cannot get mml. Server problem.“): {\displaystyle \delta _{ij}\,} ) dargestellt wird und nach Leopold Kronecker benannt ist. Es wird manchmal auch als Kronecker-Symbol bezeichnet, obwohl es noch ein anderes Kronecker-Symbol gibt.

Der auch gebräuchliche Begriff Deltafunktion ist irreführend, weil damit häufiger die Delta-Distribution bezeichnet wird.

Es wird vor allem in Summenformeln im Zusammenhang mit Matrix- oder Vektoroperationen verwendet, oder um Fallunterscheidungen in Formeln zu vermeiden.

Definition

Sei eine beliebige Indexmenge und ein Ring mit Nullelement Fehler beim Parsen (Konvertierungsfehler. Der Server („https://wikimedia.org/api/rest_“) hat berichtet: „Cannot get mml. Server problem.“): {\displaystyle 0^{R}} und Einselement Fehler beim Parsen (Konvertierungsfehler. Der Server („https://wikimedia.org/api/rest_“) hat berichtet: „Cannot get mml. Server problem.“): {\displaystyle 1^{R}} gegeben. Seien ferner Fehler beim Parsen (Konvertierungsfehler. Der Server („https://wikimedia.org/api/rest_“) hat berichtet: „Cannot get mml. Server problem.“): {\displaystyle i,j\in I} . Das Kronecker-Delta ist definiert als:

Fehler beim Parsen (Konvertierungsfehler. Der Server („https://wikimedia.org/api/rest_“) hat berichtet: „Cannot get mml. Server problem.“): {\displaystyle \delta _{ij}={\begin{cases}1^{R}&{\text{falls}}\quad i=j\\0^{R}&{\text{falls}}\quad i\neq j.\end{cases}}}

Bei der Indexmenge handelt es sich meist um eine endliche Teilmenge der natürlichen Zahlen.

Eigenschaften

Das Kronecker-Delta kann in der Form

,

geschrieben werden, ist also die charakteristische Funktion der Diagonalmenge Fehler beim Parsen (Konvertierungsfehler. Der Server („https://wikimedia.org/api/rest_“) hat berichtet: „Cannot get mml. Server problem.“): {\displaystyle D=\{(i,j)\in I\times I\mid i=j\}} . Häufig wird dabei an Stelle von ein erweiterter Bildraum, z. B. die reellen Zahlen, betrachtet.

Für Produkte von Kronecker-Deltas mit und für alle mit Indexmengen Fehler beim Parsen (Konvertierungsfehler. Der Server („https://wikimedia.org/api/rest_“) hat berichtet: „Cannot get mml. Server problem.“): {\displaystyle I_{1},I_{2}} gilt

Fehler beim Parsen (Konvertierungsfehler. Der Server („https://wikimedia.org/api/rest_“) hat berichtet: „Cannot get mml. Server problem.“): {\displaystyle \prod _{i}\delta _{b_{i}b_{j}}=\prod _{i}\delta _{b_{i}b_{k}}\;\forall j,k.}

Dieser Ausdruck vergleicht quasi jedes mit dem feststehenden und ist nur dann 1, wenn alle Ausdrücke gleich sind, weshalb statt ein beliebiges (ausgedrückt als ) dafür eingesetzt werden kann.

Für beispielsweise Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle I_1=\{1,2,3\}} mit Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle b_1:=a,\; b_2:=b,\; b_3:=c} bedeutet das (nach Streichung der gleichen Indizes):

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \delta_{ba}\delta_{ca} = \delta_{ab}\delta_{cb} = \delta_{ac}\delta_{bc}.}

Dieser Ausdruck ist genau dann (und nur dann) 1, wenn Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle a=b=c} gilt. Wird das Kronecker-Delta zusammen mit der einsteinschen Summenkonvention verwendet, so ist diese Aussage nicht korrekt. Auf das Kronecker-Delta zusammen mit der einsteinschen Summenkonvention wird im Abschnitt „Als (r,s)-Tensor“ eingegangen.

Trivialerweise gilt auch (für Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle a,b\in I} ):

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \prod \delta_{ab} = \delta_{ab} \,.}

Als (r,s)-Tensor

Betrachtet man das Kronecker-Delta auf einem endlichdimensionalen Vektorraum , so kann man es als (0,2)-Tensor verstehen. Als multilineare Abbildung

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \delta \colon V \times V \to \mathbb R}

ist das Kronecker-Delta durch seine Wirkung auf die Basisvektoren eindeutig bestimmt und es gilt

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \delta(e_i,e_j) = \begin{cases} 1, & \mbox{falls } \quad i=j, \\ 0, & \mbox{falls } \quad i \neq j.\end{cases} }

Das Kronecker-Delta als (0,2)-Tensor ist ein Spezialfall der allgemeinen Definitionen vom Artikelanfang. Ist nämlich in der allgemeinen Definition die Indexmenge endlich und werden durch diese endlichdimensionale Vektoren indiziert, dann sind die allgemeine Definition und die Sichtweise als (0,2)-Tensor gleich. Eine andere Erweiterung des als Tensor aufgefassten Kronecker-Deltas ist das Levi-Civita-Symbol.

Im Zusammenhang mit dem Tensorkalkül wird oftmals die einsteinsche Summenkonvention verwendet, bei dieser wird über doppelt auftretende Indizes summiert. Das heißt, in einem n-dimensionalen Vektorraum gilt

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \delta_{ab}\delta_{ab}=\sum_{a=1}^n \sum_{b=1}^n \delta_{ab}\delta_{ab} = \sum_{a=1}^n \delta_{aa}=\sum_{1}^{n} 1=n \neq \delta_{ab}\,. }

Meistens wird bei dieser Summenkonvention auch darauf geachtet, welche Indizes oben und welche unten stehen und es wird nur summiert, wenn der gleiche Index einmal oben und einmal unten steht. Im Fall des Kronecker-Deltas müsste es dann also Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \delta^a_{b}\delta_{a}^b = n} lauten.

Integral- und Summendarstellung

Wählt man als Indexmenge die Menge der ganzen Zahlen Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \Z} , dann kann das Kronecker-Delta mithilfe eines Kurvenintegrals dargestellt werden. Es gilt nämlich

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \delta_{xn} = \frac{1}{2\pi i} \oint_{|z|=1} z^{x-n-1} dz = \frac{1}{2\pi} \int_0^{2\pi} e^{i(x-n)\varphi} d\varphi\,, }

wobei die Kurve, die auf dem Kreis Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle |z|=1} verläuft, gegen den Uhrzeigersinn gerichtet ist. Diese Darstellung kann mithilfe des Residuensatzes bewiesen werden.

Manchmal ist auch eine Darstellung in der Form

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \delta_{nm} = \frac{1}{N} \sum_{k = 1}^N e^{2 \pi i \frac{k}{N}(n-m)}}

hilfreich. Diese kann mit Hilfe der Partialsummenfolge der geometrischen Reihe hergeleitet werden.

Beziehung zur Betrags- und Signum-Funktion

Das Kronecker-Delta lässt sich durch die folgende Kombination von Betrags- und Signum-Funktion darstellen:

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \delta_{ij} = 1 - |\sgn(i - j)|}

Beispiele

  • In der linearen Algebra kann die Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle n\times n} -Einheitsmatrix als Fehler beim Parsen (Konvertierungsfehler. Der Server („https://wikimedia.org/api/rest_“) hat berichtet: „Cannot get mml. Server problem.“): {\displaystyle (\delta _{ij})_{i,j\in \{1,\ldots ,n\}}} geschrieben werden.
  • Mit dem Kronecker-Delta kann man das Skalarprodukt orthonormierter Vektoren Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle e_1, \dots, e_n} als Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \langle e_i, e_j\rangle = \delta_{ij}} schreiben.

Alternative Definition in der digitalen Signalverarbeitung

In der digitalen Signalverarbeitung wird eine andere ähnliche Definition des Kronecker-Deltas verwendet. Das Kronecker-Delta wird hier als Funktion auf verstanden und ist definiert durch

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \delta[n] = \begin{cases} 1, & n = 0 \\ 0, & n \ne 0 \end{cases}\,.}

Die Funktion wird in diesem Zusammenhang als „Einheitsimpuls“ bezeichnet und dient der Ermittlung der Impulsantwort in diskreten Systemen wie beispielsweise digitalen Filtern.[1]

Siehe auch

  • Die Delta-Distribution bildet ein Analogon in der Distributionentheorie, sie verhält sich unter Integration wie das Kronecker-Delta unter Summation über alle möglichen Werte für einen der beiden Parameter.
  • Das Dirac-Maß dagegen bildet ein Analogon in der Maßtheorie, es verhält sich unter Integration bezüglich des Maßes analog zum Kronecker-Delta.

Weblinks

Einzelnachweise

  1. Alan V. Oppenheim, Ronald W. Schafer: Zeitdiskrete Signalverarbeitung. 3. Auflage. Oldenbourg Verlag, 1999, ISBN 3-486-24145-1.