Meromiktisches Gewässer
Als meromiktisches Gewässer bezeichnet man in der physikalischen Limnologie – und auch Ozeanographie – ein stehendes Gewässer, in dem die vertikale Wasserzirkulation nicht über das ganze Tiefenprofil stattfindet. Das Phänomen wird Meromixis genannt.
Grundlagen
Vertikale Gliederung |
Schichtung von Seen |
Mixistypen |
|
Das Mixis-System (Durchmischung) ist ein System der Klassifikation von Stillgewässern. Hier stehen die meromiktischen (teilweise durchmischenden, von altgriechisch μέρος méros, deutsch ‚Teil‘) Gewässer zwischen den holomiktischen (ganz durchmischenden) und amiktischen (nicht durchmischenden): In einem meromiktischen Gewässer findet Durchmischung nur in bestimmten, voneinander getrennten Zonen statt, wodurch sich Zonen verschieden alten Wassers ausbilden, während sich das Wasser in anders geschichteten Wasserkörpern, etwa dimiktischen oder oligomiktischen, zumindest einmal jährlich – in ersteren jahreszeitlich, in zweiteren unregelmäßig – vollständig durchmischt.
Der Begriff der Meromixis wurde vom Österreicher Ingo Findenegg 1935 geprägt[3][4][5] und von George Evelyn Hutchinson 1937 wesentlich erweitert.[6]
Mechanismen
Die regulär zirkulierende obere Schicht wird Mixolimnion (‚mischendes Wasser‘) genannt, der Tiefenwasserbereich Monimolimnion. Im Mixolimnion bildet sich oft eine reguläre – permanent oder intermittierend – mischende Schichtung mit Epilimnion (Oberflächenwasser), Metalimnion (Sprungschicht) und auch einem Hypolimnion (Tiefenschicht) aus, nur überlagert diese das Monimolimnion, sodass sich eine charakteristische Trennschicht ausbildet.
Es kommen vor allem zwei Ursachen in Frage.
- Temperaturinduzierte Prozesse: Kaltes Wasser mit 4 °C (Temperatur der größten Wasserdichte) reichert sich an, es entsteht eine Temperaturschichtung (Trennschicht: Thermokline). Dieser Mechanismus tritt primär in gemäßigten oder temperierten Klimaten auf.[7]
- Salinität und andere Lösungen und Gemische des Wassers: Durch gebundene Stoffe wird Wasser schwerer und reichert sich an (Trennschicht: Chemokline).
Meromiktische Gewässer bilden meist einen stabilen Zustand, der nur durch Ausnahmsereignisse aufgehoben werden kann. Das Mixolimnion versorgt das Monimolimnion regelmäßig mit Nachschub an kaltem oder angereichertem Wasser. Die beiden Prozesse kommen auch in Kombination vor, andererseits können hochsaline Monimolimnia auch bei warmem Tiefenwasser stabil bleiben. Begünstigend sind zum Beispiel eine kleine Wasseroberfläche im Verhältnis zur Tiefe, wodurch in windgeschützter Lage kaum Angriffsfläche für den Wind entsteht. Ein Sonderfall ist etwa der Ödensee, Steiermark, der durch kalte unterirdische Höhlenzuflüsse meromiktisch wird: Es fließt nur das warme Oberflächenwasser ab, die Tiefe bleibt chemisch geschichtet.[8][9]
Das Mixolimnion verliert ständig durch Sedimentation Biomasse und damit Nährstoffe an das Monimolimnion. Dadurch bilden sich im Tiefenwasser oft anaerobe (sauerstofffreie) Verhältnisse aus. Bekanntes Beispiel ist das Schwarze Meer, das größte meromiktische Becken der Erde, das in der Tiefe für höhere Lebewesen unbewohnbar ist.[10] Auch Methan, Ammonium, Schwefelwasserstoff und ähnliche Stoffwechselendprodukte können sich so anreichern.
Ein Beispiel für ein eigenständiges Biotop, durch ein meromiktisches Gewässer bedingt, ist der
(
) in Palau, ein abgeschnittener Meeresrest mit seiner Quallen- und Seeanemonenpopulation im Mixolimnion, einer schwebende Matte von Bakterien der Gattung Chromatium (Chromatiaceae) an der dünnen, hochsauren Chemokline und dem anoxischen Tiefenwasser.
Neben natürlichen Prozessen können auch anthropogene Ereignisse zur Ausbildung meromiktischer Seen führen. Beispiele sind der Luganersee und Zugersee, zwei randalpine Talungsseen, durch Eutrophierung aus der Landwirtschaft und Abwässern seit den 1950ern, die Bergbaufolgelandschaft Merseburg-Ost (Raßnitzer See), oder der Traunsee im Salzkammergut durch jahrhundertelange industrielle Einleitungen aus den Salinen Bad Ischl und Ebensee. In solchen Fällen ist Frage aktueller Forschung, ob und wie man die „unnatürlichen“ Meromixis aufheben könnte.[11]
Es kann in normalerweise oligomiktischen Seen auch zu meromiktischen Episoden kommen. So sind am Hallstättersee, ebenfalls im Salzkammergut, durch Chloride aus dem Salzbergbau (durch Bergwerksgebrechen) Phasen unterbrochener Durchmischung aus den Jahren 1971–1975, 1981–1988 und 2006–2011 untersucht,[12] oder im Mono Lake, USA, in den 1980ern und 1990ern durch starken Oberflächenzufluss von Süßwasser in den See, der durch vorherige Wasserentnahme einen stark angereicherten Salzgehalt aufwies.
In Stauseen – ohne Grundablass – findet sich oft beim Erststau durch anaerobe Zersetzung der überstauten Biomasse Meromixis ein, die sich meist erst nach ein, zwei Jahrzehnten stabilisiert. Aus diesem Grund wird heute möglichst zumindest der Wald geschlägert, optimalerweise der Mutterboden abgetragen.[13] Dasselbe findet auch bei der natürlichen Neubildung von Seen etwa durch Abschnürungen vom Salzwasser oder bei durch Massenbewegungen verlegten Talungen statt.
Durch spezielle Bedingungen kann es auch zu zumindest teilweisen Zirkulationsvorgängen in das Monimolimnion kommen, wodurch giftige Abbauprodukte von Mikroorganismen zu Fischsterben führen kann. Bekannt ist auch der Kohlenstoffdioxid-Ausbruch des Kratersees Nyos in Kamerun nach Erdbeben (1986, 1800 Todesopfer).
Meromixis rückt auch zunehmend in den Fokus der Paläoklimatologie, weil in der Tiefe ungestörte Sedimentation stattfindet, wodurch gut erhaltene Klimaarchive entstehen.[14] Auch wird vermutet, dass viele ergiebige Fossillagerstätten unter den sauerstoffarmen Bedingungen meromiktischer Süßwasserseen oder Lagunen entstanden sind.[15]
Liste der meromiktischen Seen
Meromiktische Seen gibt es auf der ganzen Welt. Die Verteilung scheint ungleichmäßig zu sein, was aber möglicherweise auf unvollständige Untersuchungen zurückzuführen ist. Abhängig von der genauen Definition von „meromiktisch“ liegt das Verhältnis zwischen meromiktischen und holomiktischen Seen weltweit bei etwa 1:1000.
Afrika
- Nyos-See und Manoun-See in Kamerun[16][17]
- Kiwusee in Ruanda/Demokratische Republik Kongo[16]
- Tanganjikasee in Burundi/Demokratische Republik Kongo/Sambia[16]
- Malawisee in Malawi/Mosambik/Tansania[16]
- Lake Nyahirya (auch Lake Nyahira, Ziwa Nyahirya), südwestlich des Ortes Rwaihamba, West-Uganda[16][18][19]
- Lake Sonachi beim Naivashasee, Nakuru County, Kenia[16]
Antarktis
- Vandasee alias Lake Vanda im Ross-Nebengebiet
- Fryxellsee in Viktorialand
- Burton Lake, eine meromiktische und salzhaltige Lagune.
- 21 Seen einschließlich Organic Lake,[17] Ace Lake,[16][17][20] Pendant Lake, Glider Lake, Williams Lake, Abraxas Lake, Johnstone Lake, Ekho Lake, Lake Farrell, Shield Lake, Oval Lake, Ephyra Lake, Scale Lake, Lake Anderson alias Anderson Lake, Oblong Lake, Lake McCallum, Clear Lake, Laternula Lake und South Angle Lake in den Vestfoldbergen.[21]
Asien
- Pantai Keracut (Keracut Beach) Lake, Penang Nationalpark in NW der Insel Penang, Malaysia.
- Ongeim'l Tketau (Quallensee), Eil Malk, Republik Palau.
- Zigetangcuo Lake(tibetisch ཙི་གེ་དར་མཚོ tsi ge dar mtsho, THL Tsige Dartso), ein krenogener See in der Präfektur Nagqu, Tibet, VR China. Es handelt sich um den höchstgelegenen meromiktischen See.[22]
- Karnaphuli-Stausee (bengalisch কাপ্তাই হ্রদ englisch Kaptai Lake), im Distrikt Rangamati, im südöstlichen Teil von Bangladesch. Entstanden durch den Bau eines Staudamms in Kaptai zur Errichtung eines Wasserkraftwerks.
- Bababu-See, Basilisa, Dinagat Islands, Philippinen.
- Vansee, Osttürkei[16]
- Schirasee, Chakassien, Südsibirien, Russland[16][17]
- Lake Shunet, Chakassien, Russland[16][17]
- Lake Oigon, im NW der Mongolei[16][17]
- Matanosee, im Osten der indonesischen Insel Sulawesi[16]
- Lake Harutori (japanisch 春採湖 Harutoriko), in der Stadt Kushiro, Hokkaidō, Japan[16]
Australien
- Tasmanien
- Fidler-See (Lake Fidler), nahe dem Gordon River im Weltnaturerbegebiet Tasmanische Wildnis, Tasmanien, Australien.[23][24]
- Lake Morrison, ebenda[23]
- Sulphide Pool, ebenda[23][24]
Europa
- Österreich
- Kärntner Seen, Alpenseen im Bundesland Kärnten, untersucht von Ingo Findenegg in den 1930er Jahren: Wörthersee (Durchmischungstiefe 45–60 m), Millstätter See (50–80 m), Weißensee (40–60 m), Klopeiner See (30 m), Längsee (15 m) und Goggausee (8 m)
- Toplitzsee und Ödensee im Salzkammergut
- Deutschland
- Ulmener Maar,[25][26] Weinfelder Maar und Schalkenmehrener Maar[16]
- Großer Goitzschesee (von Zadereev et al. als Lake Goitschebezeichnet), Raßnitzer See und Wallendorfer See[16]
- Hemmelsdorfer See, Südbecken
- Vähä-Pitkusta-See
- Pakasaivo-See
- Alinen Mustajärvi[17]
- Birkelandsvatn (alias Birkelandsvatnet oder Salvatnet), Kilevann, Tronstadvatn, Rørholtfjorden, Botnvatn (alias Botnvatnet (Saltdal)), Rørhopvatn (alias Rørhopvatnet) und Strandvatn (alias Strandvatnet)
- Kongressvatnet, Kapp Linné nahe Grönfjord (Grønfjorden), Spitzbergen[16]
- Lough Furnace (irisch Loch na Foirnéise)
- Russland (europäischer Teil)
- Zeleny Mys („Grünes Kap“), Oblast Murmansk, der periodisch durch einen Kanal aus der Kandalakscha-Bucht mit Meerwasser versorgt wird.[27]
- Cueva de la Mora, Andalusien[16][29]
- Laguna de La Cruz[16]
- El Tobar, Provinz Cuenca, Autonome Region Kastilien-La Mancha[16]
- Banyoles-See, bei Banyoles im NO von Katalonien[16]
- Lake Vilar und Lake Cisó, in NO-Spanien,[16][17] letzterer einer der Fundorte des parasitischen Epibionten Vampirococcus (Gram-negative Bakterien),[30] nach anderen Autoren ist dieser aber (sogar) holomiktisch.[31]
- Lago di Cadagno im Kanton Tessin[17][16][32] und früher der benachbarte Lago Ritóm ebenda[33][34]
- Luganersee ebenfalls im Kanton Tessin[16]
- Drachenaugensee bei Rogoznica nahe Šibenik[16]
- Etoliko-Lagune, Westgriechenland[16]
- Lacul Fără Fund bei Ocna Sibiului in Siebenbürgen (Transsylvanien)[16][17]
- Lacul Ursu, Siebenbürgen[17]
- Lacul Ocnei alias Lacurile Durgău, See Nummer 4 bei Turda, Siebenbürgen
- das Schwarze Meer (siehe oben).
Amerika
- Lateinamerika (Mittel- und Südamerika)
- Lake A[17] und Lake C1 on Ellesmere Island, Nunavut[39][40][41]
- Blackcat Lake bei Dorset, Haliburton County, Ontario, im Frost Centre.[42]
- Crawford Lake bei Milton (Ontario)
- Picard Lake bei Lakehurst (Ontario)[43]
- Little Round Lake in Central Frontenac, Ontario[44]
- Mahoney Lake im Okanagan Valley, British Columbia[17][45]
- McGinnis Lake im Petroglyphs Provincial Park, Ontario[46]
- Pink Lake im Gatineau-Park, Quebec
- Powell Lake in der Stadt Powell River, British Columbia[47]
- Sunfish Lake bei Waterloo (Ontario)
- Teapot Lake, Heart Lake Conservation Area, Brampton (Ontario)[48]
- Ogac Lake (Inuktitut für Kabeljau alias Dorsch), Baffininsel, Nunavut[49]
- USA
- Ballston Lake, 30 km NNW von Albany (New York).[50]
- Big Soda Lake, NW von Fallon (Nevada).[51]
- Brownie Lake bei Minneapolis (Minnesota).[52]
- Canyon Lake bei Big Bay, Marquette County, Michigan.[53]
- Chapel Lake im Pictured Rocks National Lakeshore, bei Munising, Michigan.[54]
- Devil's Bathtub im Mendon Ponds Park im SO von Rochester (New York)
- Irondequoit Bay bei Rochester (New York), wird auch als meromiktisch angesehen; die Verwendung von Streusalz wurde als Hauptgrund für den Wechsel genannt.
- Glacier Lake in Clark Reservation State Park bei Syracuse (New York).
- Green Lake und Round Lake im Green Lakes State Park bei Syracuse (New York).
- der Große Salzsee bei Salt Lake City (Utah).
- Hot Lake, Okanogan County, Washington[55]
- Knaack Lake, Wisconsin[56]
- Lake Mary in der NW-Ecke von Vilas County, Wisconsin.[57]
- Lower Mystic Lake in Arlington und Medford, Massachusetts.
- Redoubt Lake (alias Kunaa Shak Áayi) bei Sitka, Alaska; einer der größten meromiktischen Seen Nordamerikas.[58]
- Soap Lake (See), Soap Lake (City), Grant County (Washington).[17]
Literatur
- Anu Hakala: Meromixis as a part of lake evolution – observations and a revised classification of true meromictic lakes in Finland. In: Boreal Environmental Research Band 9, 2004, S. 37–53, borenv.net (PDF).
Weblinks
Einzelnachweise
- ↑ Tide schafft Lebensraum, Bund für Umwelt und Naturschutz Deutschland Hamburg
- ↑ Limnische Zone in der Unterweser, auf: Weser in Bewegung
- ↑ Ingo Findenegg: Limnologische Untersuchungen im Kärntner Seengebiete. Ein Beitrag zur Kenntnis des Stoffhaushaltes in Alpenseen. In: Internationale Revue der Gesamte Hydrobiologie. Band 32, 1935, S. 369–423.
- ↑ Anu Hakala: Meromixis as a part of lake evolution – observations and a revised classification of true meromictic lakes in Finland. In: Boreal Environmental Research Band 9, S. 37–53, 2004, borenv.net (PDF).
- ↑ Honorarprofessor Dr. Dr. h. c. Ingo Findenegg zum Gedächtnis. In: Carinthia II. 164./84. Jahrgang, 1974, S. 356 (zobodat.at [PDF; 1000 kB; abgerufen am 10. Mai 2013]).
- ↑ G. Evelyn Hutchinson: A contribution to the limnology of arid regions. In: Transactions of the Connecticut Academy of Arts and Sciences Band 33, 1937, S. 47–132; Angabe nach Hakala 2004.
- ↑ Meromiktischer See., Eintrag in GeoDataZone, geodz.com
- ↑ Karl Stundl: Limnologische Untersuchungen an einigen steirischen Seen. In: Mitteilungen des naturwissenschaftlichen Vereins für Steiermark. 83, 1953, Abschnitt Ödensee (Meereshöhe 780 m, Seefläche 20 ha), S. 171–184, hier S. 175 ff. (zobodat.at [PDF]; dort S. 5).
- ↑ Ausführlichere Diskussion in Amt der Steiermärkischen Landesregierung, Fachabteilungsgruppe Landesbaudirektion: 1. Steirischer Seenbericht, Universitätsbibliothek Graz, 2008, Der Ödensee, 7.2 Sauerstoff, S. 81; via WebArchiv (PDF); literature.at).
- ↑ John L. Ingraham, Roberto Kolter: March of the Microbes: Sighting the Unseen. Neuauflage, Harvard University Press, 2012, ISBN 978-0-674-05403-5, S. 28 (eingeschränkte Vorschau in der Google-Buchsuche). Deswegen gibt es in der Donau auch keine natürlichen Aalvorkommen, da dieser in seiner marinen Lebensphase als Tiefseefisch lebt.
- ↑ Christian Holzner: Untersuchung der Tiefenwassererneuerung in meromiktischen Seen mittels transienter Tracer und numerischer Modellierung. Diplomarbeit Eidgenössische Technische Hochschule – Departement Umweltnaturwissenschaften, Zürich 2001, library.eawag.ch (Memento vom 3. Dezember 2013 im Internet Archive) (PDF).
- ↑ Harald Ficker, Hubert Gassner, Daniela Achleitner, Robert Schabetsberger: Limnologische Auswirkungen von Soleeinleitungen auf den Hallstättersee Vortrag. Bericht in Treffen der SIL AUSTRIA, 26.–28. Oktober 2009 in Salzburg, S. 14, protozoology.com (PDF; 225 kB).
- ↑ Ulrich Maniak: Hydrologie und Wasserwirtschaft. Springer DE, 2005, ISBN 978-3-540-27839-9, S. 534 (eingeschränkte Vorschau in der Google-Buchsuche).
- ↑ Anu Hakala: Paleoenvironmental and paleoclimatic studies on the sediments of Lake Vähä-Pitkusta and observations of meromixis. Dissertation University of Helsinki, 2005, oa.doria.fi (Seite nicht mehr abrufbar, Suche in Webarchiven) Info: Der Link wurde automatisch als defekt markiert. Bitte prüfe den Link gemäß Anleitung und entferne dann diesen Hinweis. (PDF).
- ↑ David M. Martill, Günter Bechly, Robert F. Loveridge: The Crato Fossil Beds of Brazil: Window Into an Ancient World. Cambridge University Press, 2007, ISBN 978-1-139-46776-6, insb. S. 59 (eingeschränkte Vorschau in der Google-Buchsuche).
- ↑ a b c d e f g h i j k l m n o p q r s t u v w x y z aa ab ac ad ae af ag Egor Zadereev, Bertram Boehrer, Ramesh D. Gulati: Introduction: Meromictic Lakes, Their Terminology and Geographic Distribution, in: Ecology of Meromictic Lakes, Februar 2017, doi:10.1007/978-3-319-49143-1_1
- ↑ a b c d e f g h i j k l m n o Bayanmunkh Baatar, Pei-Wen Chiang, Denis Yu Rogozin, Yu-Ting Wu, Ching-Hung Tseng, Cheng-Yu Yang, Hsiu-Hui Chiu, Bolormaa Oyuntsetseg, Andrey G. Degermendzhy, Sen-Lin Tang; Tzen-Yuh Chiang (Hrsg.-): Bacterial Communities of Three Saline Meromictic Lakes in Central Asia, in: PLoS One 11(3), e0150847, online 2. März 2016, doi:10.1371/journal.pone.0150847, PMID 26934492, PMC 4775032 (freier Volltext).
- ↑ Yusuf S. Kizito, Arnold Nauwerck; J. Ejsmont-Karabin, R. M. Pontin (Hrsg.): Temporal and vertical distribution of planktonic rotifers in a meromictic crater lake, Lake Nyahirya (Western Uganda), in: Rotifera VII. Developments in Hydrobiology, Band 109, Springer, Dordrecht, 1995, doi:10.1007/978-94-009-1583-1_38
- ↑ Lake Nyahirya, auf Mapcarta
- ↑ Federico M. Lauro, Matthew Z. DeMaere, Sheree Yau, Mark V. Brown, Charmaine Ng, David Wilkins, Mark J. Raftery, John A. E. Gibson, Cynthia Andrews-Pfannkoch, Matthew Lewis, Jeffrey M. Hoffman, Torsten Thomas, Ricardo Cavicchioli: An integrative study of a meromictic lake ecosystem in Antarctica – Integrated Genomics and Post-Genomics Approaches in Microbial Ecology, in: The ISME Journal Band 5 (2011), S. 879–895, 2. Dezember 2010, doi:10.1038/ismej.2010.185
- ↑ John A. E. Gibson: The meromictic lakes and stratified marine basins of the Vestfold Hills, East Antarctica, in: Antarctic Science 11.2 (1999): S. 175–192, ResearchGate (freies PDF).
- ↑ Gene E. Likens: Lake Ecosystem Ecology: A Global Perspective. Academic Press, 2010, ISBN 978-0-12-382003-7, S. 186. Ein Abkömmling der Encyclopedia of Inland Waters.
- ↑ a b c Roger L. Croome, Peter A. Tyler: Microbial microstratification and crepuscular photosynthesis in meromictic Tasmanian lakes, in: Verb. Interna. Verein. Limnol. 22, S. 1216–1223, Stuttgart, Oktober 1984. Schweizerbart'sche Verlagsbuchhandlung, Stuttgart, Epub 1. Dezember 2017, doi:10.1080/03680770.1983.11897470. Mit Bild vom Fidler-See.
- ↑ a b Roger L. Croome, Peter A. Tyler: The Microanatomy and Ecology of ‘Chlorochromatium aggregatum’ in Two Meromictic Lakes in Tasmania, in: Journal of General Microbiology Band 130, Nr. 10, 1. Oktober 1984, doi:10.1099/00221287-130-10-2717
- ↑ Robert G. Wetzel: FATE OF HEAT, in Limnology (Third Edition), 2001. Kap. 2. Crenogenic Meromixis
- ↑ K. M. Stewart, E. Hollan: Meromixis in Ulmener Maar (Germany), in: Journal SIL Proceedings, 1922–2010, Internationale Vereinigung für Theoretische und Angewandte Limnologie: Verhandlungen, Band 19, Nr. 2, 1975, S. 1211–1219, online: 1. Dezember 2017, doi:10.1080/03680770.1974.11896173
- ↑ Denis Grouzdev, Vasil A. Gaisin, Maria Krutkina, Irina A. Bryantseva, Olga N. Lunina, Alexander S. Savvichev, Vladimir M. Gorlenko: Genome Sequence of Prosthecochloris sp. Strain ZM and Prosthecochloris sp. Strain ZM-2, Isolated from an Arctic Meromictic Lake, Microbiology Resource Announcements 7(21), 29. November 2018, e01415-18, doi:10.1128/MRA.01415-18, PMC 6284733 (freier Volltext), PMID 30533845, PDF
- ↑ Stéphan Jacquet, Jean-François Briand, C. Leboulanger, C. Avois-Jacquet, L. Oberhaus, B. Tassin, B. Vinçon-Leite, G. Paolini, J.-C. Druart, O. Anneville, J.-F. Humbert: The proliferation of the toxic cyanobacterium Planktothrix rubescens following restoration of the largest natural French lake (Lac du Bourget). In: Harmful Algae. 4, Nr. 4, 2003, S. 651–672. doi:10.1016/j.hal.2003.12.006. Via Web-Archiv vom 6. März 2009
- ↑ CUEVA DE LA MORA - MINA SAN MIGUEL, auf wikiloc
- ↑ Ricardo Guerrero, Carlos Pedrós-Alió, Isabel Esteve, Jordi Mas, David Chase, Lynn Margulis: Predatory prokaryotes: Predation and primary consumption evolved in bacteria. In: Proceedings of the National Academy of Sciences USA. 83, Nr. 7, April 1986, S. 2138–2142. doi:10.1073/pnas.83.7.2138. PMID 11542073. PMC 323246 (freier Volltext).
- ↑ Sergio Ramírez-Moreno, Maira Martinez-Alonso, Sebastián Méndez-Alvarez, Nuria Gaju: Seasonal microbial ribotype shifts in the sulfurous karstic lakes Ciso and Vilar, in northeastern Spain, in: International Microbiology 8(4), S. 235–242, Januar 2006, PMID 16562375
- ↑ Raffaele Peduzzi, Filippo Bianconi: PIORA E SAN GOTTARDO STORIA SCIENTIFICA RICERCA INSEGNAMENTO. Documenta Centro Biologia Alpina di Piora, Piora, 2019
- ↑ Stefan Bachmann: Das Geheimnis des Lago di Cadagno. Auf: beobachter.ch vom 1. Oktober 2010.
- ↑ Reinhard Bachofen, Helmut Brandl, Ferdinand Schanz: Mikroskopisch klein, aber doch sichtbar! Ein Feldführer für Mikroorganismen. NEUJAHRSBLATT der Naturforschenden Gesellschaft in Zürich, Januar 2007.
- ↑ M. Maerki, Beat Müller, Christian Dinkel, Bernhard Wehrli: Mineralization pathways in lake sediments with different oxygen and organic carbon supply, in: Limnology and Oceanography 54, März 2009, S. 428–438, doi:10.4319/lo.2009.54.2.0428
- ↑ Kirsten Oswald, Jana Milucka, Andreas Brand, Philipp Hach, Sten Littmann, Bernhard Wehrli, Marcel M.M. Kuypers, Carsten J. Schubert: Aerobic gammaproteobacterial methanotrophs mitigate methane emissions from oxic and anoxic lake waters, in: Limnology and Oceanography. Vol. 61, No. S1 (Special Edition), 2016, S. S101-S118, doi:10.1002/lno.10312, JSTOR 26628566.
- ↑ Stefan Brönnimann, Monika Wälti: Jahresbericht 2016 Geographisches Institut Bern und Nachrichten der Geographischen Gesellschaft Bern, 2016/17. In: Berner Geographische Mitteilungen, Geographisches Institut Universität Bern, 2017.
- ↑ Lucien von Gunten, Martin Grosjean, Jürg Beer, Philipp Grob, Arturo Morales, Roberto Urrutia: Age modeling of young non-varved lake sediments: methods and limits. Examples from two lakes in Central Chile, in: J Paleolimnol, 20. November 2008, Springer Science+Business Media B. V., doi:10.1007/s10933-008-9284-5
- ↑ Ted Lewis, Scott F. Lamoureux, Alexandre Normandeau, Hilary A. Duganc: Hyperpycnal flows control the persistence and flushing of hypoxic high-conductivity bottom water in a High Arctic lake, in: Canadian Journal of Fisheries and Aquatic Sciences 58(12), S. 2405–2418, 16. August 2017, doi:10.1139/as-2017-0022
- ↑ Claude Belzile Warwick, F. Vincent, John A. E. Gibson, Patrick Van Hove: Bio-optical characteristics of the snow, ice, and water column of a perennially ice-covered lake in the High Arctic, Dezember 2001, doi:10.1139/cjfas-58-12-2405; insbesondere: Claude Belzile: Map showing the location of Lake A, northern Ellesmere Island, Canada
- ↑ Jessica D. Tomkins, Scott F. Lamoureux, Dermot Antoniades, Warwick F. Vincent: Sedimentology of perennial ice-covered, meromictic Lake A, Ellesmere Island, at the northern extreme of Canada, in: Canadian Journal of Earth Sciences 46(2), 12. Februar 2009, S. 83–100, doi:10.1139/E09-008
- ↑ Algonquin Highlands: Ski and Snowshoe Trails
- ↑ Council Meeting - 19 Jan 2016 - Municipality of Trent Lakes
- ↑ J. P. Smol, S. R. Brown, R. N. McNeely: Cultural disturbances and trophic history of a small meromictic lake from central Canada, in: J. Meriläinen, P. Huttunen, R. W. Battarbee (Hrsg.) Paleolimnology. Developments in Hydrobiology, Band 15. Springer, 1983, Dordrecht. doi:10.1007/978-94-009-7290-2_20
- ↑ Trinity L. Hamilton, Roderick J. Bovee, Sarah R. Sattin, Wiebke Mohr, William P. Gilhooly III, Timothy W. Lyons, Ann Pearson, Jennifer L. Macalady: Carbon and Sulfur Cycling below the Chemocline in a Meromictic Lake and the Identification of a Novel Taxonomic Lineage in the FCB Superphylum, Candidatus Aegiribacteria, in: Front Microbiol. 7: S. 598, online 27. April 2016, doi:10.3389/fmicb.2016.00598, PMID 27199928, PMC 4846661 (freier Volltext).
- ↑ Ontario Parks: Petroglyphs
- ↑ B. Sanderson, K. Perry, T. Pedersen et al.: Vertical Diffusion in Meromictic Powell Lake, British Columbia. In: Journal of Geophysical Research. 91, Nr. C-6, 15. Juni 1986, S. 7647–7655. bibcode:1986JGR....91.7647S. doi:10.1029/JC091iC06p07647.
- ↑ Heart Lake Conservation Area: Master Plan, Heart Lake Conservation Area Master Plan Advisory Committee, Conservation Land Planning Group, TRCA
- ↑ David Cameron Hardie, Claude B. Renaud, N. V. Mukhina et al;: The isolation of Atlantic cod, Gadus morhua (Gadiformes), populations in Northern Meromictic lakes—A recurrent arctic phenomenon, in: Journal of Ichthyology 48(3), April 2008, S. 230–240, doi:10.1134/S0032945208030053
- ↑ Jaime L. Toney, Donald T. Rodbell, Norton G. Miller: Sedimentologic and palynologic records of the last deglaciation and Holocene from Ballston Lake, New York. In: Quaternary Research. 60, Nr. 2, 2003, S. 189–199. doi:10.1016/S0033-5894(03)00093-0. Abgerufen am 9. September 2018.
- ↑ James E. Cloern, Brian E. Cole, Ronald S. Oremland et al.: Autotrophic Processes in Meromictic Big Soda Lake, Nevada. In: Limnology and Oceanography. 28, Nr. 6, November 1983, S. 1049–1061. doi:10.4319/lo.1983.28.6.1049.
- ↑ Nicholas Lambrecht, Chad Wittkop, Sergei Katsev, Mojtaba Fakhraee, Elizabeth Swanner: Geochemical Characterization of Two Ferruginous Meromictic Lakes in the Upper Midwest, USA. In: Journal of Geophysical Research: Biogeosciences. 123, Nr. 10, 2018, S. 3403–3422. doi:10.1029/2018JG004587.
- ↑ Nicholas Lambrecht, Chad Wittkop, Sergei Katsev, Mojtaba Fakhraee, Elizabeth D. Swanner: Geochemical Characterization of Two Ferruginous Meromictic Lakes in the Upper Midwest, USA. In: Journal of Geophysical Research: Biogeosciences. 123, Nr. 10, 2018, S. 3403–3422. doi:10.1029/2018JG004587.
- ↑ Lakes and Ponds. In: Pictured Rocks National Lakeshore, Michigan . National Park Service, US Dept of Interior. Abgerufen am 23. Februar 2016.
- ↑ G. C. Anderson: Some Limnological Features of a Shallow Saline Meromictic Lake. In: Limnology and Oceanography. 3, Nr. 3, Juli 1958, S. 259–270. bibcode:1958LimOc...3..259A. doi:10.4319/lo.1958.3.3.0259. via Web-Archiv vom 14. Juli 2014
- ↑ T. B. Parkin, T. D. Brock et al.: The Role of Phototrophic Bacteria in the Sulfur Cycle of a Meromictic Lake. In: Limnology and Oceanography. 26, Nr. 5, September 1981, S. 880–890. bibcode:1981LimOc..26..880P. doi:10.4319/lo.1981.26.5.0880. via Web-Archiv vom 23. Februar 2015
- ↑ Walter C. Weimar, G. Fred Lee et al.: Some Considerations of the Chemical Limnology of Meromictic Lake Mary. In: Limnology and Oceanography. 18, Nr. 3, Mai 1973, S. 414–425. bibcode:1973LimOc..18..414W. doi:10.4319/lo.1973.18.3.0414.
- ↑ G. A. McCoy: Limnological studies in southeastern Alaska and water quality measurements along the TAPS route during pipeline construction. In: US Geological Survey (Hrsg.): Circular 751-B: USGS Survey in Alaska, Accomplishments During 1976. 1977, S. B7.