Moseleysches Gesetz
Das Moseleysche Gesetz (nach seinem Entdecker Henry Moseley) im Jahr 1914[1] beschreibt die Energie der -Linie im Röntgenspektrum, deren Strahlung beim Übergang eines L-Schalen-Elektrons zur K-Schale emittiert wird. Das Moseleysche Gesetz ist eine Erweiterung der Rydberg-Formel.
In einer allgemeineren Form kann man mit diesem Gesetz auch die Wellenlängen Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \lambda} der übrigen Linien des charakteristischen Röntgenspektrums bestimmen. Diese Wellenlängen sind, wie auch die zur Wellenlänge Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \lambda} gehörende Frequenz Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle f } , abhängig von der Ordnungszahl des jeweiligen chemischen Elements.
Dabei ist:
- - die Lichtgeschwindigkeit
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle f_\mathrm{R} = R \, \frac{1}{1+\frac{m_e}{M}}}
- angepasste Rydberg-Frequenz
- - Rydbergfrequenz
- - die Rydbergkonstante
- - die Masse eines Elektrons
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle M } - die Kernmasse des beteiligten Elements
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle Z_\text{eff} = Z - S }
- die effektive Kernladungszahl des Elements. Hier liegt der Unterschied zur Rydberg-Formel
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle Z } - die Kernladungszahl des Elements
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle S } - eine Konstante, die die Abschirmung der Kernladung durch Elektronen beschreibt, die sich zwischen Kern und dem betrachteten Elektron befinden.
- , Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle n_2 } - Hauptquantenzahlen der beiden Zustände (n1 = innere, n2 = äußere Schale).
Für den Übergang eines Elektrons von der zweiten Schale (L-Schale) in die erste Schale (K-Schale), den sogenannten Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle K_{\alpha}} -Übergang, gilt Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle S \approx 1} , und die entsprechende Wellenzahl Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \tilde \nu} ist dann das moseleysche Gesetz für die -Linie:
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \begin{align} f_{K_{\alpha}} = c \, \tilde \nu & = f_\mathrm{R} \, (Z-1)^2 \, \left( \frac{1}{1^2} - \frac{1}{2^2} \right)\\ & = f_\mathrm{R} \, (Z-1)^2 \, \left( \frac{3}{4} \right). \end{align}}
Startschale | Zielschale | Übergang | Abschirmkonstante | |||
---|---|---|---|---|---|---|
Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle n_2} | ...-Schale | Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle n_1} | ...-Schale | Fehler beim Parsen (Konvertierungsfehler. Der Server („https://wikimedia.org/api/rest_“) hat berichtet: „Cannot get mml. Server problem.“): {\displaystyle S\approx } | ||
2 | L | 1 | K | 1 | Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle K_{\alpha}} | 1,0 |
3 | M | 2 | L | 1 | Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle L_{\alpha}} | 7,4 |
3 | M | 1 | K | 2 | Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle K_{\beta}} | 1,8 |
Einzelnachweise
- ↑ Henry Moseley: The High-Frequency Spectra of the Elements. Part II. In: Phil. Mag. (= 6). Band 27. Taylor & Francis, London 1914, S. 703–713 (englisch, archive.org [abgerufen am 10. Februar 2020]).