Nernst-Gleichung
Die Nernst-Gleichung ist eine fundamentale Gleichung der Elektrochemie.[1] Sie beschreibt die Abhängigkeit des Elektrodenpotentials eines Redox-Paares Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \rm{Ox} + z_\mathrm {e}\ e^- \rightleftharpoons\ \rm{Red}} von den Konzentrationen der beteiligten Substanzen und der Temperatur.[2] Die Gleichung ist nach dem deutschen Chemie Nobelpreisträger Walther Nernst benannt. Die ausführliche Form der Nernst-Gleichung lautet:
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle E = E^0 + \frac{RT}{z_e F}\ln\bigg(\frac{a_\mathrm{Ox}}{a_\mathrm{Red}}\bigg)}
Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle E} | Elektrodenpotential |
Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle E^0} | Standardelektrodenpotential |
Universelle oder molare Gaskonstante: | |
absolute Temperatur (= Temperatur in Kelvin) | |
Anzahl der übertragenen Elektronen (auch Äquivalentzahl) | |
Faraday-Konstante: Fehler beim Parsen (Konvertierungsfehler. Der Server („https://wikimedia.org/api/rest_“) hat berichtet: „Cannot get mml. Server problem.“): {\displaystyle F=96485\ \mathrm {C\cdot {mol}^{-1}} =96485\ \mathrm {J\cdot V^{-1}\cdot {mol}^{-1}} } | |
Aktivität des betreffenden Redox-Partners (für verdünnte Lösungen kann auch die Stoffmengenkonzentration eingesetzt werden) |
Nimmt man an, dass eine Temperatur von vorliegt, kann man die Nernst-Gleichung vereinfachen zu:
- Fehler beim Parsen (Konvertierungsfehler. Der Server („https://wikimedia.org/api/rest_“) hat berichtet: „Cannot get mml. Server problem.“): {\displaystyle E=E^{0}+{\frac {0,059\ \mathrm {V} }{z_{e}}}\lg {\bigg (}{\frac {a_{\mathrm {Ox} }}{a_{\mathrm {Red} }}}{\bigg )}}
Man beachte, dass in dieser Form der Nernst-Gleichung der dekadische Logarithmus und nicht der natürliche Logarithmus steht.
Mathematische Herleitung der vereinfachten Nernst-Gleichung |
Die Nernst-Gleichung in allgemeiner Form
kann vereinfacht werden. Hierzu nimmt man an, dass eine Temperatur von Fehler beim Parsen (Konvertierungsfehler. Der Server („https://wikimedia.org/api/rest_“) hat berichtet: „Cannot get mml. Server problem.“): {\displaystyle T=25{}^{\circ }{\rm {{C}=298\ \mathrm {K} }}} vorherrscht. Setzt man nun die allgemeine Gaskonstante und die Faraday-Konstante ein, erhält man: Nun soll der natürliche Logarithmus in einen dekadischen Logarithmus umgeformt werden. Hierfür ist folgende Basisumformung notwendig:[1] Durch Zusammenfassen der Konstanten erhält man:
Somit erhält man die Nernst-Gleichung in vereinfachter Form:
|
Mathematische Anmerkung zur Nernst-Gleichung |
Allgemein kann man das Vorzeichen eines Logarithmus umdrehen, wenn man Zähler und Nenner im Quotienten vertauscht: Somit gilt:
Und auch:
|
Interpretation und Bedeutung
Jede Kombination von zwei Elektroden nennt man Galvanische Zelle (z. B. Batterien, Akkus oder auch biologische Zellen). Ihre Leerlaufspannung U0 (historisch: Elektromotorische Kraft) ist gleich der Potentialdifferenz ΔE der Elektroden, die bei Anwendung der Nernst-Gleichung auf die Halbzellen als U0 = ΔE = EAkzeptor − EDonator berechnet werden kann. Analog erlaubt sie die Berechnung der sich einstellenden Gleichgewichtsaktivitäten, wenn an die Halbzellen eine Spannung angelegt wird.
Die Nernst-Gleichung besitzt zentrale Bedeutung in der Elektrochemie, Galvanik und Elektroanalytik, weil sie die elektrische Größe Spannung (bzw. Elektrodenpotential) mit der chemischen Größe Konzentration verbindet. Sie ist streng genommen nur gültig für Zellen ohne Überführung und stromlose Vorgänge, bietet aber einen Ausgangspunkt für die Herleitung von Gleichungen in stromdurchflossenen elektrochemischen Systemen. Das Nernstpotential U0 multipliziert mit der Ladung z·F für einen molaren Stoffumsatz z·F·U0 ergibt die Gibbsenergie. ∆G = −z·F·U0. Das Nernstpotential gibt demnach die chemische Energie der elektrochemischen Reaktion, geteilt durch die beteiligte Ladung an.
Alternative Formulierungen
Die Bezeichnung Nernst-Gleichung wird je nach Anwendung für verschiedene abgeleitete oder erweiterte Gleichungen benutzt.
Spezielle (historische) Nernst-Gleichung
Die ursprüngliche Form leitete im Jahr 1889 der deutsche Physiker und Chemiker Walther Nernst unter Verwendung von Konzentrationen c ab.
Der Faktor R T / ze F wird Nernst-Faktor oder Elektrodensteilheit genannt; eine Wertetabelle für R T / ze F bei verschiedenen Temperaturen befindet sich im Artikel zur Elektrodensteilheit.
Allgemeine Nernst-Gleichung (Herleitung)
Für die Änderung der Gibbs-Energie (Freien Enthalpie) Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \Delta_\mathrm{R} G} einer chemischen Reaktion, an der Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle k} Stoffe Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle A_1 , \dots , A_k} gemäß
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \nu_1 A_1 + \nu_2 A_2 + \dots \longrightarrow \dots + \nu_{k-1} A_{k-1} + \nu_k A_k}
beteiligt sind, gilt
Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle a_i} | auf die Standardaktivität bezogene Aktivität des Stoffes Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle i} |
Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \nu_i} | stöchiometrischer Koeffizient des Stoffes Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle i} in der Reaktionsgleichung (negativ für Edukte) |
Der Zusammenhang zwischen Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \Delta_\mathrm{R}G} und dem Logarithmus ist plausibel, da einerseits Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \Delta_\mathrm{R}G} proportional zur Teilchenzahl (oder der Schreibweise der chemischen Gleichung) ist, andererseits in den Aktivitätsquotienten die einzelnen Aktivitäten mit der Potenz der stöchiometrischen Koeffizienten eingehen. Der Logarithmus wandelt den Exponenten in einen Faktor um.
Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \mathrm{2 \, H_2 + O_2 \longrightarrow 2 \, H_2O} } ergibt pro Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \mathrm{H_2O}} dasselbe (elektro-)chemische Potential wie Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \mathrm{H_2 + {1\over 2}\ O_2 \longrightarrow H_2O} \qquad } .
Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \Delta_\mathrm{R} G} ist die bei konstantem Druck und konstanter Temperatur aus der Reaktion maximal gewinnbare Arbeit, die vollständig in nutzbare elektrische Arbeit umgewandelt werden kann. Aufgrund des Energieerhaltungssatzes gilt
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \Delta_\mathrm{R}G = - z_e\,F\,\Delta E}
was in der allgemeinen Nernst-Gleichung resultiert
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \Delta E = \Delta E^0 - \frac{RT}{z_e F}\,\ln\prod_{i=1}^k a_i ^{\nu_i}}
Die allgemeine Nernst-Gleichung erlaubt für die betrachtete Reaktion die Berechnung der Gleichgewichtskonstanten (für Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \Delta E = 0} ), Richtung (freiwillig für Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \Delta E > 0} , erzwungen für Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \Delta E < 0} ) und Spannung Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \Delta E} , die die Reaktion liefert, wenn man ihre Redox-Teilreaktionen in getrennten Halbzellen ablaufen lässt.
siehe auch: chemisches Potential, elektrochemisches Potential
Anwendung
Die Nernst-Gleichung findet in der potentiometrischen Titration Verwendung. Beispielsweise wird eine Messelektrode in eine Probelösung eingetaucht und muss auf das zu bestimmende Ion reagieren, das heißt, das Potential dieser Elektrode muss abhängig von der Konzentration des zu bestimmenden Ions sein. Diese Abhängigkeit wird durch die Nernst-Gleichung beschrieben. Bei dem Versuch ist darauf zu achten, dass die Messung stromlos erfolgt, da sich sonst durch Elektrolyse die Potentiale verfälschen würden. Man verwendete daher zur Messung eine Spannungs-Kompensationsschaltung.
Reduktion
Für die Reduktion
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \mathrm{Ox + \mathit{z}_\mathit{e} e^- \longrightarrow Red}}
geht die allgemeine Form unmittelbar in die erstgenannte Gleichung über. Diese Identität hat zwei praktische Bedeutungen:
- Die elektrochemische Spannungsreihe listet prinzipiell Reduktionen.
- Da man jede chemische Reaktion in Oxidations- und Reduktionsteilreaktionen von Redox-Paaren zerlegen kann, ist ΔE die Summe der mit den zugehörigen stöchiometrischen Koeffizienten multiplizierten Nernst-Gleichungen für die Teilreaktionen. Dabei gehen die Oxidationsteilreaktionen mit negativem stöchiometrischen Koeffizienten ein.
Knallgasreaktion
Die Teilreaktionen der so genannten Knallgasreaktion
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \mathrm{2 \ H_2 + O_2 \longrightarrow 2 \ H_2O}}
laufen als Oxidation
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \mathrm{2 \ H_2 \longrightarrow 4 \ H^+ + 4 \ e^-}}
bzw. Reduktion
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \mathrm{O_2 + 4 \ e^- \longrightarrow 2\ O^{2-}}}
räumlich getrennt in Wasserstoff-Sauerstoff-Brennstoffzellen ab. Die damit erzielbare Spannung kann mit der Nernst-Gleichung berechnet werden und beträgt unter Standardbedingungen ΔE0 = 1,23 V.
Konzentrationselemente
Ein Konzentrationselement besteht aus zwei Halbzellen, die Elektrolyte mit den gleichen Bestandteilen enthalten, aber mit unterschiedlicher Ionenkonzentration. Es eignet sich daher besonders zur Demonstration der Nernst-Gleichung.
Ein Beispiel ist ein Kupfer-Konzentrationselement aus zwei Kupferelektroden und zwei Kupfersulfatlösungen, die sich nur in der Konzentration unterscheiden. Bei Stromfluss gleichen sich dann die Konzentrationen in den Zellen an, denn es laufen dann folgende Reaktionen ab:
Die Reduktion in der Halbzelle mit der größeren Kupferionenkonzentration cg:
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \mathrm{Cu^{2+} (\mathit{c}_g) + 2 \ e^- \longrightarrow Cu}}
Die Oxidation in der Halbzelle mit der kleineren Kupferionenkonzentration ck:
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \mathrm{Cu \longrightarrow Cu^{2+} (\mathit{c}_k) + 2 \ e^-}}
Anhand der Nernst-Gleichungen für die Teilreaktionen oder mit der allgemeinen Nernst-Gleichung der Gesamtreaktion erhält man für die Spannung ΔE des Kupfer-Konzentrationselements:
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \Delta E = \frac{RT}{2F}\ln\frac{c_\mathrm{g}(\mathrm{Cu}^{2+})}{c_\mathrm{k}(\mathrm{Cu}^{2+})}}
Allgemein gilt für die Spannung eines Konzentrationselements:
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \Delta E = \frac{RT}{z_e F}\ln\frac{a_\mathrm{g}}{a_\mathrm{k}}} .
Im Temperaturbereich von 22 bis 26 °C gilt:
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \Delta E = \frac{0{,}059 V}{z_e}\lg\frac{a_\mathrm{g}}{a_\mathrm{k}}} .
Konzentrationselemente mit verschiedenen Elementen
Bei Konzentrationselementen mit unterschiedlichen Elementen und Konzentrationen, die von den Normalbedingungen abweichen, wird folgende Formel verwendet:
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle E = E^{0}+\frac{0{,}059 V}{z_e}\lg\frac{(c_\mathrm{ox})^a}{(c_\mathrm{red})^b}} .
- a = Vorfaktor der Oxidationsseite (Beispiel: 4 Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \mathrm H^+} )
- b = Vorfaktor der Reduktionsseite (Beispiel: 2 Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \mathrm{H_2O}} )
pH-Wert
Betrachten wir H+-Konzentrations-Elemente (Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle z_e = 1} ), dann geht die Nernst-Gleichung bei Raumtemperatur (T = 298,15 K ≙ 25 °C), Umwandlung des natürlichen Logarithmus in den dekadischen Logarithmus (lg a(H+) = ln a(H+) / ln 10) und unter Beachtung der Definition des pH-Wertes (pH = −lg a(H+)) in die Form
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \Delta E = -0{,}059\,\mathrm{V}\, (\mathrm{pH}_1 - \mathrm{pH}_2)}
über. Glaselektroden zur pH-Messung stellen im Prinzip solche H+-Konzentrations-Elemente dar. In ihnen befindet sich eine Lösung mit bekanntem pH-Wert. Wird Kontakt zu einer Lösung mit unbekanntem pH-Wert hergestellt, misst das zugehörige Messgerät eine Spannung, die mit dem Faktor 0,059 V direkt in einen pH-Wert umgerechnet und angezeigt wird. Der Faktor kann herstellungsbedingt variieren und muss vor der Verwendung kalibriert werden, liegt jedoch immer nahe 0,059 V.
Lambdasonden
Bei einer Lambdasonde, deren Sensorelement für Sauerstoffionen leitfähig ist, stellt sich aufgrund des Konzentrationsgefälles des Sauerstoffes zwischen Luft und Abgas eine Spannung ein, die benutzt wird, um mit der Lambdaregelung ein gewünschtes Gemisch einzustellen.
Nernst-Gleichung in der Biologie und Physiologie
In biologischen Systemen trennen Zellmembranen Bereiche unterschiedlicher Ionenkonzentrationen ab. Ist die Membran für ein bestimmtes Ion selektiv permeabel, wird es entlang des Konzentrationsgradienten diffundieren, gleichzeitig entsteht aber, da das Ion geladen ist, eine Spannung (Ruhemembranpotential). Mit der Nernst-Gleichung lässt sich die Gleichgewichtslage dieses Vorgangs beschreiben.
Gebräuchlich ist eine vereinfachte Form der Gleichung, bei der R, F und T (310 K) sowie der Umrechnungsfaktor zum dekadischen Logarithmus in eine Konstante gefasst werden:
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle E = \frac{61{,}51\,\mathrm{mV}}{z_e}\lg\frac{c_\mathrm{aussen}}{c_\mathrm{innen}}}
Siehe auch: Goldman-Gleichung
Siehe auch
Literatur
- Gerold Adam, Peter Läuger, Günther Stark: Physikalische Chemie und Biophysik. 5., überarb. Auflage. Springer, Berlin, Heidelberg 2009, ISBN 978-3-642-00423-0.
- P. W. Atkins, Julio De Paula (Hrsg.): Physikalische Chemie. 5. Auflage. Wiley-VCH, Weinheim 2013, ISBN 978-3-527-33247-2.