Normalform eines Spiels

aus Wikipedia, der freien Enzyklopädie

Die Normalform eines Spiels, kurz Normalform, bezeichnet in der Spieltheorie eine Darstellungsform von Spielen, die sich im Wesentlichen auf die A-priori-Strategiemengen der einzelnen Spieler und eine Auszahlungsfunktion als Funktion der gewählten Strategiekombinationen beschränkt. Gerecht wird diese Darstellungsform am ehesten solchen Spielen, bei denen alle Spieler ihre Strategien gleichzeitig und ohne Kenntnis der Wahl der anderen Spieler festlegen.

Eine Alternative ist die Extensivform eines Spiels, deren Stärke in der anschaulichen Darstellung zeitlicher oder logischer Abfolgen liegt.

Die Normalform für Spiele wurde erstmals von Émile Borel (1921) und John von Neumann (1928) beschrieben, die erkannten, dass im Prinzip jedes Strategiespiel in eine solche Form transformiert werden kann.

Definition

Die Normalform eines Spiels ist ein Tupel mit den folgenden Elementen:[1]

Menge der Spieler
Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle N = \{1, 2, \ldots, n\}}
Strategieraum
Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \Sigma_i} bezeichnet die Strategiemenge des Spielers Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle i} , aus der er seine Züge wählen kann.
Nutzenfunktion
Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle u\colon\Sigma \to \R^n}
Dabei ist Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle u_i\colon\Sigma \to \R} die Nutzenfunktion des Spielers Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle i} . Abhängig von der eigenen Strategie und der Strategie der anderen Spieler hat der Spieler einen Nutzen oder eine Auszahlung von Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle u_i(\sigma_1,\ldots,\sigma_i,\ldots, \sigma_n)} .

Gemischte und reine Strategien

In den so genannten reinen Strategien wählen die Spieler genau ein . Für manche Spiele ist es jedoch notwendig, den Spielern zusätzlich die Möglichkeit einzuräumen, zufällig die Strategien auszuwählen und zuvor lediglich die Wahrscheinlichkeitsverteilung über Fehler beim Parsen (Konvertierungsfehler. Der Server („https://wikimedia.org/api/rest_“) hat berichtet: „Cannot get mml. Server problem.“): {\displaystyle \Sigma _{i}} anzugeben, mit denen die einzelnen Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \sigma_{i,j}\in\Sigma_i} ausgewählt werden. Dabei bezeichnet Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle s_i} die Parameter dieser Wahrscheinlichkeitsverteilung und Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle S_i} die Menge der möglichen Parameterkombinationen.

Ist Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \Sigma_i} endlich beziehungsweise abzählbar, so ist Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle s_i} ein Vektor, wobei Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle s_{i,j}} die Wahrscheinlichkeit angibt, dass die Strategie Fehler beim Parsen (Konvertierungsfehler. Der Server („https://wikimedia.org/api/rest_“) hat berichtet: „Cannot get mml. Server problem.“): {\displaystyle \sigma _{i,j}} gewählt wird. Man spricht bei Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle s_i} von einer gemischten Strategie.

Das Tupel Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle S(\Gamma) = (N, S, u)} ist die Normalform eines solchen Spiels in gemischten Strategien. Dabei gilt , und ist der erwartete Nutzen.

Darstellung in Tabellenform

Werden nur Spiele mit zwei Spielern, , betrachtet und sind die Strategiemengen und endlich und überschaubar, kann man ein Spiel in Normalform auch als eine Tabelle, die Auszahlungsmatrix (Bimatrix), darstellen:

Spieler 1\Spieler 2 Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \sigma_{2,1}} Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \sigma_{2,2}}
Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \sigma_{1,1}} (3,3) (1,2)
Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \sigma_{1,2}} (2,1) (1,1)

In diesem Fall bezeichnet die erste Zahl in der Klammer die Auszahlung des Spielers 1 und die zweite Zahl die Auszahlung des Spielers 2 bei der entsprechenden Strategienkombination. Wählt Spieler 1 beispielsweise Strategie Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \sigma_{1,2}} und Spieler 2 Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \sigma_{2,1}} , so erhält Spieler 1 eine Auszahlung in Höhe 2 und Spieler 2 eine Auszahlung in Höhe 1.

Einzelnachweise

  1. Wolfgang Leininger und Erwin Amann: Einführung in die Spieltheorie., S. 14 ff.