Orthogonale Abbildung
Eine orthogonale Abbildung oder orthogonale Transformation ist in der Mathematik eine Abbildung zwischen zwei reellen Skalarprodukträumen, die das Skalarprodukt erhält. Orthogonale Abbildungen sind stets linear, injektiv, normerhaltend und abstandserhaltend. Im euklidischen Raum können orthogonale Abbildungen durch orthogonale Matrizen dargestellt werden und beschreiben Kongruenzabbildungen, beispielsweise Drehungen oder Spiegelungen. Die bijektiven orthogonalen Abbildungen eines Skalarproduktraums in sich bilden mit der Hintereinanderausführung als Verknüpfung eine Untergruppe der Automorphismengruppe des Raums. Die Eigenwerte einer solchen Abbildung sind nicht notwendigerweise reell, sie besitzen jedoch alle den komplexen Betrag eins.
Eine bijektive orthogonale Abbildung zwischen zwei Hilberträumen wird auch orthogonaler Operator genannt. Die entsprechenden Gegenstücke bei komplexen Skalarprodukträumen sind unitäre Abbildungen und unitäre Operatoren. Von orthogonalen Abbildungen zu unterscheiden sind zueinander orthogonale Funktionen, beispielsweise orthogonale Polynome, welche als Vektoren in einem Funktionenraum aufgefasst werden und dadurch charakterisiert sind, dass ihr Skalarprodukt null ist.
Definition
Eine Abbildung zwischen zwei reellen Skalarprodukträumen Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle (V, \langle \cdot, \cdot \rangle_V)} und Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle (W, \langle \cdot, \cdot \rangle_W)} heißt orthogonal, wenn für alle Vektoren Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle u, v \in V}
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \langle f(u), f(v) \rangle_W = \langle u, v \rangle_V}
gilt. Eine orthogonale Abbildung ist demnach dadurch charakterisiert, dass sie das Skalarprodukt von Vektoren erhält. Insbesondere bildet eine orthogonale Abbildung zueinander orthogonale Vektoren Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle v} und Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle w} (also Vektoren, deren Skalarprodukt null ist) auf zueinander orthogonale Vektoren Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle f(v)} und Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle f(w)} ab.
Beispiele
ist trivialerweise orthogonal. Im euklidischen Raum Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \R^n} sind orthogonale Abbildungen gerade von der Form
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle f \colon \R^n \to \R^n, \, x \mapsto Q \cdot x} ,
wobei eine orthogonale Matrix ist. Im Raum Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \ell^2} der quadratisch summierbaren reellen Zahlenfolgen stellt beispielsweise der Rechtsshift
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle f \colon \ell^2 \rightarrow \ell^2, \, (a_1, a_2, a_3, \ldots ) \mapsto (0, a_1, a_2, a_3, \ldots )}
eine orthogonale Abbildung dar. Weitere wichtige orthogonale Abbildungen sind Integraltransformationen der Form
- Fehler beim Parsen (Konvertierungsfehler. Der Server („https://wikimedia.org/api/rest_“) hat berichtet: „Cannot get mml. Server problem.“): {\displaystyle f\colon L^{2}(\mathbb {R} )\to L^{2}(\mathbb {R} ),\,g\mapsto \int _{\mathbb {R} }K(x,\cdot )\,g(x)~dx}
mit einem geeignet gewählten Integralkern Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle K} . Beispiele sind die Sinus- und die Kosinustransformation, die Hilbert-Transformation und die Wavelet-Transformation. Die Orthogonalität solcher Transformationen folgt dabei aus dem Satz von Plancherel und dessen Varianten.
Eigenschaften
Im Folgenden werden die Zusätze Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle V, W} bei den Skalarprodukten weggelassen, da durch das Argument klar wird, um welchen Raum es sich jeweils handelt.
Linearität
Eine orthogonale Abbildung ist linear, das heißt für alle Vektoren Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle u,v \in V} und Zahlen Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle a,b \in \R} gilt
- .
Es gilt nämlich aufgrund der Bilinearität und der Symmetrie des Skalarprodukts
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \begin{align} & \langle f(u + v) - f(u) - f(v), f(u + v) - f(u) - f(v) \rangle = \\ & = \langle f(u + v), f(u + v) \rangle - 2\langle f(u + v), f(u) \rangle -2\langle f(u + v), f(v) \rangle + \langle f(u), f(u)\rangle + 2\langle f(u), f(v) \rangle + \langle f(v), f(v) \rangle = \\ & = \langle u + v, u + v \rangle - 2\langle u + v, u \rangle -2\langle u + v, v \rangle + \langle u, u\rangle + 2\langle u, v \rangle + \langle v, v \rangle = \\ & = \langle u + v, u + v \rangle - 2\langle u + v, u + v \rangle + \langle u + v, u + v \rangle = 0 \end{align}}
sowie
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \begin{align} & \langle f(au) - af(u), f(au) - af(u) \rangle = \langle f(au), f(au) \rangle - 2\langle f(au), af(u) \rangle + \langle af(u), af(u) \rangle = \\ & = \langle f(au), f(au) \rangle - 2a\langle f(au), f(u) \rangle + a^2 \langle f(u), f(u) \rangle = \langle au, au \rangle - 2\langle au, au \rangle + \langle au, au \rangle = 0. \end{align}}
Aus der positiven Definitheit des Skalarprodukts folgt daraus dann die Additivität und die Homogenität der Abbildung.
Injektivität
Der Kern einer orthogonalen Abbildung enthält nur den Nullvektor, denn für Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle v \in \operatorname{ker} f} gilt
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \langle v, v \rangle = \langle f(v), f(v) \rangle = \langle 0, 0 \rangle = 0}
und aus der positiven Definitheit des Skalarprodukts folgt daraus dann Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle v = 0} . Eine orthogonale Abbildung ist demnach stets injektiv. Sind Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle V} und Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle W} endlichdimensional mit der gleichen Dimension, dann gilt aufgrund des Rangsatzes
und somit ist Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle f} auch surjektiv und damit bijektiv. Orthogonale Abbildungen zwischen unendlichdimensionalen Räumen müssen jedoch nicht notwendigerweise surjektiv sein; ein Beispiel hierfür ist der Rechtsshift.
Normerhaltung
Eine orthogonale Abbildung erhält die Skalarproduktnorm eines Vektors, das heißt
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \| f(v) \| = \| v \|} ,
denn es gilt
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \| f(v) \|^2 = \langle f(v), f(v) \rangle = \langle v, v \rangle = \| v \|^2} .
Umgekehrt ist jede lineare Abbildung zwischen zwei reellen Skalarprodukträumen, die die Skalarproduktnorm erhält, orthogonal. Es gilt nämlich aufgrund der Bilinearität und der Symmetrie des Skalarprodukts einerseits
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \| f(u+v) \|^2 = \| u + v \|^2 = \langle u + v, u + v \rangle = \langle u, u \rangle + 2 \langle u, v \rangle + \langle v, v \rangle = \| u \|^2 + 2 \langle u, v \rangle + \| v \|^2}
und mit der Linearität der Abbildung andererseits
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \begin{align} \| f(u + v) \|^2 & = \| f(u) + f(v) \|^2 = \langle f(u) + f(v), f(u) + f(v) \rangle = \\ & = \| f(u) \|^2 + 2 \langle f(u), f(v) \rangle + \| f(v) \|^2 = \| u \|^2 + 2 \langle f(u), f(v) \rangle + \| v \|^2. \end{align}}
Durch Gleichsetzen der beiden Gleichungen folgt daraus dann die Orthogonalität der Abbildung.
Isometrie
Aufgrund der Normerhaltung und der Linearität erhält eine orthogonale Abbildung auch den Abstand zweier Vektoren, denn für die von der Norm induzierte Metrik Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle d} gilt
- Fehler beim Parsen (Konvertierungsfehler. Der Server („https://wikimedia.org/api/rest_“) hat berichtet: „Cannot get mml. Server problem.“): {\displaystyle d(f(u),f(v))=\|f(u)-f(v)\|=\|f(u-v)\|=\|u-v\|=d(u,v)} .
Eine orthogonale Abbildung stellt damit eine Isometrie dar. Umgekehrt ist jede (a priori nicht notwendigerweise lineare) Abbildung zwischen zwei Skalarprodukträumen, die Abstände erhält und den Nullvektor auf den Nullvektor abbildet, orthogonal. Eine solche Abbildung ist nämlich aufgrund von
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \| f(u) \| = \| f(u) - 0 \| = \| f(u) - f(0) \| = \| u - 0 \| = \| u \|}
normerhaltend und aus der Polarisationsformel folgt dann
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle 2 \langle f(u),f(v) \rangle = \| f(u) \|^2 + \| f(v) \|^2 - \| f(u) - f(v) \|^2 = \| u \|^2 + \| v \|^2 - \| u - v \|^2 = 2 \langle u,v \rangle}
und somit die Orthogonalität. Existiert eine bijektive orthogonale Abbildung zwischen zwei Skalarprodukträumen, dann sind die beiden Räume isometrisch isomorph. Eine bijektive orthogonale Abbildung zwischen zwei Hilberträumen wird auch orthogonaler Operator genannt.
Orthogonale Endomorphismen
Gruppeneigenschaften
Eine orthogonale Abbildung Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle f \colon V \to V} stellt einen Endomorphismus dar. Die Hintereinanderausführung zweier orthogonaler Endomorphismen ist wiederum orthogonal, denn es gilt
- .
Ist ein orthogonaler Endomorphismus bijektiv, dann ist seine Inverse Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle f^{-1}} aufgrund von
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \langle f^{-1}(u), f^{-1}(v) \rangle = \langle f(f^{-1}(u)), f(f^{-1}(v)) \rangle = \langle u, v \rangle}
ebenfalls orthogonal. Die bijektiven orthogonalen Endomorphismen von Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle V} bilden demnach eine Untergruppe der Automorphismengruppe Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \mathrm{Aut}(V)} . Ist der Raum endlichdimensional mit der Dimension Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle n} , so ist diese Gruppe isomorph zur orthogonalen Gruppe .
Eigenwerte
Die Eigenwerte einer orthogonalen Abbildung Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle f \colon V \to V} sind nicht notwendigerweise alle reell. Ist jedoch Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \lambda \in \Complex} ein Eigenwert von Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle f} (aufgefasst als komplexe Abbildung) mit zugehörigem Eigenvektor Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle v} , so gilt
- Fehler beim Parsen (Konvertierungsfehler. Der Server („https://wikimedia.org/api/rest_“) hat berichtet: „Cannot get mml. Server problem.“): {\displaystyle \|v\|=\|f(v)\|=\|\lambda v\|=|\lambda |\,\|v\|}
und damit Fehler beim Parsen (Konvertierungsfehler. Der Server („https://wikimedia.org/api/rest_“) hat berichtet: „Cannot get mml. Server problem.“): {\displaystyle |\lambda |=1} . Die Eigenwerte einer orthogonalen Abbildung haben also alle den komplexen Betrag eins und sind demnach von der Form
- Fehler beim Parsen (Konvertierungsfehler. Der Server („https://wikimedia.org/api/rest_“) hat berichtet: „Cannot get mml. Server problem.“): {\displaystyle \lambda =e^{it}}
mit Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle t \in \R} . Eine orthogonale Abbildung besitzt damit höchstens die reellen Eigenwerte Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \pm 1} . Die komplexen Eigenwerte treten immer paarweise komplex konjugiert auf, denn mit Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \lambda} ist aufgrund von
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle f(\bar{v}) = \overline{f(v)} = \overline{\lambda v} = \bar{\lambda} \bar{v}}
auch Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \bar\lambda = e^{-it}} ein Eigenwert von Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle f} .
Abbildungsmatrix
Die Abbildungsmatrix einer orthogonalen Abbildung Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle f \colon V \to V} bezüglich einer Orthonormalbasis Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \{ e_1, \dotsc , e_n \}} von Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle V} ist stets orthogonal, das heißt
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle A_f^TA_f = I} ,
denn es gilt
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \langle f(v), f(w) \rangle = (A_fx)^T(A_fy) = x^TA_f^TA_fy = x^T y = \langle v, w \rangle} ,
wobei Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle v=x_1 e_1+ \dotsb + x_n e_n} und sind.
Siehe auch
Literatur
- Ina Kersten: Analytische Geometrie und lineare Algebra. Band 1. Universitätsverlag Göttingen, 2005, ISBN 978-3-938616-26-0.
- Hans-Joachim Kowalsky, Gerhard O. Michler: Lineare Algebra. de Gruyter, 2003, ISBN 978-3-11-017963-7.
- Dietlinde Lau: Algebra und diskrete Mathematik. Band 1. Springer, 2011, ISBN 978-3-642-19443-6.
Weblinks
- T. S. Pigolkina: Orthogonal transformation. In: Michiel Hazewinkel (Hrsg.): Encyclopedia of Mathematics. Springer-Verlag und EMS Press, Berlin 2002, ISBN 978-1-55608-010-4 (englisch, online).
- Todd Rowland: Orthogonal transformation. In: MathWorld (englisch).