Fließformel

aus Wikipedia, der freien Enzyklopädie
(Weitergeleitet von Rauheitsbeiwert)

Fließformeln dienen zur überschlägigen Berechnung der mittleren Geschwindigkeit einer Strömung. Dabei wird zwischen offenen Gerinnen und Rohren mit Freispiegel- oder Druckabfluss unterschieden. Die Formeln hängen vom hydraulischen Radius und dem Fließgefälle des Wasserspiegels ab und berücksichtigen sämtliche Fließwiderstände in Form empirischer Beiwerte. Diese sind für jede Fließformel unterschiedlich.

Der meist zu berechnende Abfluss ergibt sich dann durch Multiplikation der gefundenen mittleren Fließgeschwindigkeit mit der Querschnittsfläche :

Offene Gerinne

Fließformel nach Brahms und de Chézy (älteste Formel)

Namensgeber waren Albert Brahms und Antoine de Chézy.

mit

  • der Fließgeschwindigkeit in m/s
  • dem Chézy-Koeffizient in m½/s
  • dem hydraulischen Radius in m (entspricht bei sehr breiten, flachen Fließquerschnitten ungefähr der Wassertiefe)
    • dem durchflossenen Querschnitt in m²
    • dem benetzten Umfang in m
  • dem Fließgefälle in m/m
    • der Höhe in m
    • der Länge in m.

Fließformel nach Gauckler-Manning-Strickler

Die Fließformel nach Gauckler-Manning-Strickler (GMS-Formel, nach Philippe Gaspard Gauckler,[1][2] Robert Manning und Albert Strickler) ist eine stark empirisch geprägte Weiterentwicklung der Formel nach Brahms und de Chézy. Sie gilt für die üblichen Verhältnisse in offenen Fließgewässern mit guter Genauigkeit:

mit dem Rauheits­beiwert nach Strickler in m1/3/s für die Gerinne­rauheit

oder im angelsächsischen Raum

mit dem Rauheitsbeiwert nach Manning .

Amerikanische Literatur und Berechnungen basieren ggf. nicht auf SI-Einheiten [m], sondern auf der Einheit Fuß [ft] (englisch foot).

Rauheitsbeiwert nach Strickler

Der Strickler-Beiwert ist in Abhängigkeit von der Oberflächenbeschaffenheit, Bewuchs und Querschnittsform zu wählen und ändert sich grundsätzlich mit der Abflusstiefe, da der Einfluss der Böschungsrauheit mit zunehmender Fließtiefe abnimmt. Somit werden summarisch alle Verlust- sowie Reibungseinflüsse erfasst.

Der Strickler-Beiwert wurde von Strickler sowohl im Labor als auch in der Natur experimentell bestimmt. Seine ungewöhnliche Einheit hat keine physikalische Bedeutung, sondern wurde so festgelegt, dass die Gleichung dimensionsecht ist.[3]

Typische Flussbett-Werte:

Oberfläche kst in m1/3/s
Glatter Beton 100
Gerades Fließgewässer 30–40
Mäandrierendes Flussbett mit Bodenbewuchs 20–30
Wildbach mit Geröll 10–20
Wildbach mit Unterholz <10

Beispielrechnung

Der Rhein fließt von Köln, Höhe ca. 50 m NHN, ca. 300 km bis zur Mündung (0 m NHN); hat also ein Gefälle von . Er ist ca. 8 m tief () und besitzt ein ausgewaschenes Flussbett mit . Dann beträgt die Fließgeschwindigkeit nach Gauckler-Manning-Strickler:

, in guter Übereinstimmung mit der gemessenen mittleren Geschwindigkeit von .

Rohrströmungen

Fließformel nach Darcy-Weisbach

Durch Umformung der Darcy-Weisbach-Gleichung (nach Henry Darcy und Julius Weisbach) ergibt sich:

mit

Mit einem Parameter entspricht diese Formel der Chézy-Formel.

Fließformel von Prandtl-Colebrook

Die Formel nach Ludwig Prandtl und Cyril Frank Colebrook gilt für Abfluss in Kreis- oder Nicht-Kreis-Profilen mit Voll- oder Teilfüllung. Sie geht von der Chézy-Formel aus und hat zusätzliche Parameter für die Viskosität von Wasser und die Rauheit des Rohres.

Für kreisrunde, vollständig gefüllte Rohre lautet die Formel:[4]

mit

  • dem Zehnerlogarithmus
  • der kinematischen Zähigkeit des Wassers in m²/s
  • dem Rauhigkeitsbeiwert nach Prandtl-Colebrook (hydraulisch wirksame Rauheit der Rohrinnenwandung) in m
  • dem Energieliniengefälle in m/m.

Für Nicht-Kreisprofile gibt es auch eine Formel, bei denen der Rohrradius durch den hydraulischen Radius (mit anderen Faktoren) ersetzt wird.

Weitere Fließformeln

Neben diesen eigentlichen Fließformeln gibt es noch weitere für andere Fälle:

mit dem Ausfluss- oder Verlustbeiwert .

Siehe auch

Einzelnachweise

  1. oder nach anderen Quellen Gaspar-Philibert Gauckler; „Philibert Gaspard“ sind auch die weiteren Vornamen von Henry Darcy
  2. Einführung in die Hydromechanik: Gerhard H. Jirka: Einführung in die Hydromechanik. KIT Scientific Publishing, 2007, ISBN 978-3-86644-158-3, S. 212 (eingeschränkte Vorschau in der Google-Buchsuche).
  3. Open-channel hydraulics / Ven Te Chow. - New York [u. a.] : McGraw-Hill, 1959
  4. DWA-Arbeitsblatt DWA-A 110: Hydraulische Dimensionierung und Leistungsnachweis von Abwasserleitungen und -kanälen, Stand Oktober 2012

Literatur

  • Albert Strickler: Beiträge zur Frage der Geschwindigkeitsformel und der Rauhigkeitszahlen für Ströme, Kanäle und geschlossene Leitungen. In: Eidg. Amt für Wasserwirtschaft (Hrsg.): Mitteilungen des Amtes für Wasserwirtschaft. Nr. 16. Bern 1923, S. 357 (In der ETH-Bibliothek).
  • Albert Strickler: Theorie des Wasserstosses. In: Schweizerische Bauzeitung. Nr. 63, 1914, S. 25.
  • Albert Strickler: Versuche über Druckschwankungen in eisernen Rohrleitungen. In: Schweizerische Bauzeitung. Nr. 64, 1914, S. 85–87,123.
  • Willi H. Hager: Swiss contribution to water hammer theory. In: Journal of hydraulic research. 1. Auflage. Band 4, Nr. 39, 2001 (englisch, Online (Memento vom 6. Februar 2005 im Internet Archive) [PDF]).
  • Robert Freimann: Hydraulik für Bauingenieure. Hanser, 2009, ISBN 978-3-446-41054-1, S. 121 (eingeschränkte Vorschau in der Google-Buchsuche).
  • Wilhelm Hosang: Abwassertechnik. Vieweg+Teubner Verlag, 1998, ISBN 978-3-519-15247-7, S. 86 (eingeschränkte Vorschau in der Google-Buchsuche).

Weblinks